Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt
\(Q\left(x\right)=P\left(x\right)+R\left(x\right)\)
Sao cho bậc của R(x) phải nhỏ hơn bậc của P(x), và Q(x) có nghiệm là 1;2;....;2016
Từ đó ta có
\(Q\left(x\right)=P\left(x\right)+a_0x^{2015}+a_1x^{2014}+...+a_{2014}x+a_{2015}\)
Ta tìm các giá trị \(a_0,a_1,...,a_{2015}\)sao cho \(Q\left(1\right)=Q\left(2\right)=...=Q\left(2016\right)=0\). Hay
\(a_0+a_1+...+a_{2015}+1=0\)
\(2^{2016}a_0+2^{2015}a_1+...+a_{2015}+2^2=0\)
................................................................................
\(2016^{2016}a_0+2016^{2015}a_1+...+a_{2015}+2016^2=0\)
\(\Rightarrow a_0=a_1=...=a_{2012}=a_{2014}=a_{2015}=0\)và \(a_{2013}=-1\)
\(\Rightarrow R\left(x\right)=-x^2\)
\(\Rightarrow Q\left(x\right)=P\left(x\right)-x^2\)
Vì \(1;2;3;...;2016\)là nghiệm của Q(x), mà bậc của Q(x) là 2016 và có hệ số \(x^{2016}\)bằng 1 nên
\(Q\left(x\right)=P\left(x\right)-x^2=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)+x^2\)
\(\Rightarrow P\left(2017\right)=\left(2017-1\right)\left(2017-2\right)...\left(2017-2016\right)+2017^2\)
Tự bấm máy tính đi nhé
Bài này nhé bài kia nhầm 1 chỗ
Đặt
\(Q\left(x\right)=P\left(x\right)+R\left(x\right)\)
Sao cho bậc của R(x) phải nhỏ hơn bậc của P(x), và Q(x) có nghiệm là 1;2;....;2016
Từ đó ta có
\(Q\left(x\right)=P\left(x\right)+a_0x^{2015}+a_1x^{2014}+...+a_{2014}x+a_{2015}\)
Ta tìm các giá trị \(a_0,a_1,...,a_{2015}\)sao cho \(Q\left(1\right)=Q\left(2\right)=...=Q\left(2016\right)=0\). Hay
\(a_0+a_1+...+a_{2015}+1=0\)
\(2^{2016}a_0+2^{2015}a_1+...+a_{2015}+2^2=0\)
................................................................................
\(2016^{2016}a_0+2016^{2015}a_1+...+a_{2015}+2016^2=0\)
\(\Rightarrow a_0=a_1=...=a_{2012}=a_{2013}=a_{2015}=0\)và \(a_{2014}=-1\)
\(\Rightarrow R\left(x\right)=-x^2\)
\(\Rightarrow Q\left(x\right)=P\left(x\right)-x^2\)
Vì \(1;2;3;...;2016\)là nghiệm của Q(x), mà bậc của Q(x) là 2016 và có hệ số \(x^{2016}\)bằng 1 nên
\(Q\left(x\right)=P\left(x\right)-x^2=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)+x^2\)
\(\Rightarrow P\left(2017\right)=\left(2017-1\right)\left(2017-2\right)...\left(2017-2016\right)+2017^2\)
Tự bấm máy tính đi nhé
Đặt \(H\left(x\right)=P\left(x\right)-\left(x^2+2\right)\)
\(\Rightarrow H\left(1\right)=H\left(3\right)=H\left(5\right)=0\)
\(\Rightarrow H\left(x\right)\) có 3 nghiệm 1; 3; 5
\(\Rightarrow H\left(x\right)=\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-a\right)\)
\(\Rightarrow P\left(x\right)=H\left(x\right)+x^2+2=\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-a\right)+x^2+2\)
\(\Rightarrow P\left(-2\right)+7P\left(6\right)=-105\left(-2-a\right)+4+2+7\left[15\left(6-a\right)+36+2\right]=1112\)
Đặt \(g\left(x\right)=f\left(x\right)+h\left(x\right)\left(1\right)\)trong đó \(h\left(x\right)=ax^2+bx+c\left(2\right)\)
Tìm \(a,b,c\)sao cho \(g\left(1\right)=g\left(2\right)=g\left(3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}g\left(1\right)=f\left(1\right)+h\left(1\right)=0\\g\left(2\right)=f\left(2\right)+h\left(2\right)=0\\g\left(3\right)=f\left(3\right)+h\left(3\right)=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}h\left(1\right)=-5\\h\left(2\right)=-11\\h\left(3\right)=-21\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b+c=-5\\4a+2b+c=-11\\9a+3b+c=-21\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a+b+c=-5\\3a+b=-6\\5a+b=-10\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-2\\b=0\\c=-3\end{cases}}\)Thay vào (2) ta được:
\(h\left(x\right)=4x-3\)
Vì \(g\left(1\right)=g\left(2\right)=g\left(3\right)=0\)mà g(x) bậc 4 có hệ số cao nhất là 1 nên ta có
\(g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-x_0\right)\)
Từ \(\left(1\right)\Rightarrow f\left(x\right)=g\left(x\right)-h\left(x\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-x_0\right)+4x-3\)
\(f\left(-1\right)=\left(-1-1\right)\left(-1-2\right)\left(-1-3\right)\left(-1-x_0\right)+4.\left(-1\right)-3\)
\(=-24\left(-1-x_0\right)-7\)
\(f\left(5\right)=\left(5-1\right)\left(5-2\right)\left(5-3\right)\left(5-x_0\right)+4.5-3\)
\(=24\left(5-x_0\right)+17\)
\(\Rightarrow f\left(-1\right)+f\left(5\right)\)\(=-24\left(-1-x_0\right)-7+24\left(5-x_0\right)+17\)
\(=24+24x_0+120-24x_0+10\)
\(=154\)
Gọi \(P\left(x\right)=x^4+ax^3+bx^2+cx+d\)với \(a,b,c,d\in R\)
Theo đề , ta thay lần lượt P(1) , P(2) , P(3) , P(4) được hệ sau : (Mình không viết dấu ngoặc nhọn được nên mình trình bày theo hàng)
\(1+a+b+c+d=1\)
\(16+8a+4b+2c+d=4\)
\(81+27a+9b+3c+d=9\)
\(256+64a+16b+4c+d=16\)
Giải hệ trên được a = -10 , b = 36 , c = -50 , d = 24
Vậy \(P\left(x\right)=x^4-10x^3+36x^2-50x+24\)
Suy ra P(5) = 49
Cảm ơn bạn Hoàng Lê Bảo Ngọc. Có ai có cách giải không dùng hệ phương trình không ạ?