Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=1+x+x^2+x^3+..........+x^{2012}\)
+)Thay x=1 vào biểu thức đc:
\(A=1+1+1^2+1^3+..............+1^{2012}\)
Có 2013 số hạng
\(\Rightarrow A=1.2013=2013\)
b)\(B=1-x+x^2-x^3+..............-x^{2011}\)
\(\Rightarrow B=\left(1-x\right)+\left(x^2-x^3\right)+............+\left(x^{2010}-x^{2011}\right)\)
+)Thay x=1 vào biểu thức được:
\(B=\left(1-1\right)+\left(1^2-1^3\right)+...........+\left(1^{2010}-1^{2011}\right)\)
\(\Rightarrow B=0+0+......................+0=0\)
+)\(C=A+B\Rightarrow C=2013+0\Rightarrow C=2013\)
Vậy C=2013
Chúc bn học tốt
a.\(P\left(x\right)=1+3x^5-4x^2+x^5+x^3-x^2+3x^3\)
\(=1-5x^2+4x^3+4x^5\)
\(Q\left(x\right)=2x^5-x^2+4x^5-x^4+4x^2-5x\)
\(=-5x+3x^2+3x^4+2x^5\)
b.\(P\left(x\right)+Q\left(x\right)=1-5x^2+4x^3+4x^5-5x+3x^2+3x^4+2x^5\)
\(=6x^5+3x^4+4x^3-2x^2-5x+1\)
\(P\left(x\right)-Q\left(x\right)=1-5x^2+4x^3+4x^5+5x-3x^2-3x^4-2x^5\)
\(=2x^5-3x^4+4x^3-8x^2+5x+1\)
c.\(P\left(x\right)+Q\left(x\right)=6x^5+3x^4+4x^3-2x^2-5x+1\)
\(x=-1\)
\(P\left(x\right)+Q\left(x\right)=6.\left(-1\right)^5+3.\left(-1\right)^4+4.\left(-1\right)^3-5.\left(-1\right)+1\)
\(=-6+3-4+5+1=-1\)
d.\(Q\left(0\right)=\)\(-5x+3x^2+3x^4+2x^5\)
\(=0\)
\(P\left(0\right)=\)\(1-5x^2+4x^3+4x^5\)
\(=1\)
Vậy x=0 ko là nghiệm của đa thức P(x)
a. Thay x = 1 vào đa thức ta có:
\(1^2-4.1+4=1\)
Thay x = 2 vào đa thức ta có
\(2^2-4.2+4=0\)
Thay x = 3 vào đa thức ta có:
\(3^2-4.3+4=1\)
Thay x = -1 vào đa thức ta có:
\(\left(-1\right)^2-4.\left(-1\right)+4=9\)
b. Trong các số trên 2 là nghiệm của đa thức M(x)
a, M(\(x\)) = \(x^2\) - 4\(x\) + 4
M(1) = 12 - 4.1 + 4 = 1
M(2) = 22 - 4.2 + 4 = 0
M(3) = 32 - 4.3 + 4 = 1
M(-1) = (-1)2 - 4.(-1) + 4 = 9
b, Trong các số 1; 2; 3 và -1 thì 2 là nghiệm của M(\(x\)) vì M(2) = 0
a,Đặt: N=x+x^2+x^3+.....+x^100
N.x=x^2+x^3+......+x^101
N.x-N=(x^2+x^3+......+x^101)-(x+x^2+....+x^100)
N.(x-1)=x^2+x^3+....+x^101-x-x^2-...-x^100
N.(x-1)=x^101-x
N=x^101-x/x-1 (1)
cho: N=x^101-x/x-1=0
x^101-x=0
x.(x^101-1)=0
x=0 hoặc x^101-1=0
x=0 hoặc x=+-1
b,thay x=1/2 vào biểu thức có:
N= tự lắp vào (1) hộ mình
N=1
k cho minh nha!
a/ \(M\left(x\right)=-x^2+5\)
Có \(-x^2\le0\forall x\)
=> \(M\left(x\right)\le5\forall x\)
=> M(x) không có nghiệm.
2/
Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có
\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)
\(\Leftrightarrow a=2\)
Vậy...
a: \(A\left(-1\right)=\left(-1\right)+\left(-1\right)^2+...+\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(=\left(-1\right)+1+...+\left(-1\right)+1\)
=0+...+0
=0
=>x=-1 là nghiệm của A(x)
b: \(A\left(\dfrac{1}{2}\right)=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}+\left(\dfrac{1}{2}\right)^{100}\)
=>\(2\cdot A\left(\dfrac{1}{2}\right)=1+\dfrac{1}{2}+...+\left(\dfrac{1}{2}\right)^{99}\)
=>\(2\cdot A\left(\dfrac{1}{2}\right)-A\left(\dfrac{1}{2}\right)=1+\dfrac{1}{2}+...+\left(\dfrac{1}{2}\right)^{99}-\dfrac{1}{2}-...-\left(\dfrac{1}{2}\right)^{100}\)
=>\(A\left(\dfrac{1}{2}\right)=1-\dfrac{1}{2^{100}}=\dfrac{2^{100}-1}{2^{100}}\)
Lời giải:
a.
$A(x)=(x+x^2)+(x^3+x^4)+....+(x^{99}+x^{100})$
$=x(x+1)+x^3(x+1)+....+x^{99}(x+1)$
$=(x+1)(x+x^3+....+x^{99})$
Tại $x=-1$
$A(-1)=(-1+1)(x+x^3+...+x^{99})=0$
$\Rightarrow x=-1$ là nghiệm của $A(x)$
b.
Tại $x=\frac{1}{2}$
$A=\frac{3}{2}(\frac{1}{2}+\frac{1}{2^3}+....+\frac{1}{2^{99}})$
$\frac{1}{2^2}A=\frac{3}{2}(\frac{1}{2^3}+\frac{1}{2^5}+....+\frac{1}{2^{101}})$
$\Rightarrow A-\frac{1}{4}A=\frac{3}{2}(\frac{1}{2}-\frac{1}{2^{101}})$
$\Rightarrow \frac{3}{4}A=\frac{3}{2}(\frac{1}{2}-\frac{1}{2^{101}})$
$\Rightarrow A=2(\frac{1}{2}-\frac{1}{2^{101}})$