Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x) = (ax4 - 4x4) - 6x3 + 3x2 - 2x + 7 = x4(a - 4) - 6x3 + 3x2 - 2x + 7
Đa thức P(x) có bậc bằng 3 => a - 4 = 0 <=> a = 4
mình nhanh nhất nè , tích đi
P(x) = (ax4 - 4x4) - 6x3 + 3x2 - 2x + 7 = (a - 4)x4 - 6x3 + 3x2 - 2x + 7
Đa thức P(x) có bậc bằng 3 => a - 4 = 0 <=> a = 4
P(x) = (ax4 - 4x4) - 6x3 + 3x2 - 2x + 7 = x4(a - 4) - 6x3 + 3x2 - 2x + 7
Đa thức P(x) có bậc bằng 3 => a - 4 = 0 <=> a = 4
\(A=4x^2-5x^3+3x-2x^2-7+x\\ =2x^2-5x^3+4x-7\)
Vậy bậc của đa thức A là 3
\(B=6x^2-5x^3-2x-4x^2-7+x\\ =2x^2-5x^3-x-7\)
Vậc bậc của đa thức B là 3
A(x) = ax4 - 2x3 + 3x2 - 2x4 - 7x + 1
A(x) = (ax4 - 2x4) - 2x3 + 3x2 - 2x4 - 7x + 1
A(x) = (a-2)x4 - 2x3 + 3x2 - 2x4 - 7x + 1
Vì đa thức trên có bậc là 4 nên a - 2 # 0 ⇒ a # 2
Vì a là số nguyên tố nhỏ hơn 5 nên a = 2; a =3
a = 2 (loại)
Vậy a = 3
Kết luận a = 3
a: \(H=6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-A\cdot x^3y^4\)
\(=x^3y^4\left(6-A\right)+x^4y^2\left(5-2\right)+3x^2y^2\)
\(=\left(6-A\right)\cdot x^3y^4+x^4y^2\cdot3+3x^2y^2\)
Để H có bậc là 6 thì 6-A=0
=>A=6
b: Khi A=6 thì \(H=\left(6-6\right)\cdot x^3y^4+3x^4y^2+3x^2y^2\)
\(=3x^4y^2+3x^2y^2\)
\(=3x^2y^2\left(x^2+1\right)\)
\(x^2+1>1>0\forall x\ne0\)
\(x^2>0\forall x\ne0\)
\(y^2>0\forall y\ne0\)
Do đó: \(x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)
=>\(H=3x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)
=>H luôn dương khi x,y khác 0
Đa thức cho = (a+4)x5y-4x3y
Do đa thức trên bậc 4 mà số mũ lớn nhất là 5 nên a+4=1/x <=> a=1/x-4