Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AMH=góc ANH=1/2*sđ cung AH=90 độ
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
=>AH cắt MN tại trung điểm của mỗi đường
=>M,O,N thẳng hàng
b: góc KAM+góc KMA
=góc IBA+góc AHN
=góc IBA+góc C
=90 độ
=>AI vuông góc NM tại K
Xét ΔAKO vuông tại K và ΔAHI vuông tại H có
góc KAO chung
=>ΔAKO đồng dạng với ΔAHI
=>AK/AH=AO/AI
=>AK*AI=AH*AO=1/2*AH^2
a: Xét (O) có
ΔMBC nội tiếp
BC là đường kính
Do đó: ΔMBC vuông tại M
Xét (O) có
ΔNBC nội tiếp
BC là đường kính
Do đó:ΔNBC vuông tại N
Xét ΔABC có
BN là đường cao
CM là đường cao
BN cắt CM tại H
Do đó: AH⊥BC tại K
b: Xét ΔANB vuông tại N và ΔAMC vuông tại M có
\(\widehat{MAC}\) chung
Do đó: ΔANB∼ΔAMC
Suy ra: AN/AM=AB/AC
hay \(AN\cdot AC=AB\cdot AM\)
a) Xét tứ giác AEHF có
\(\widehat{FAE}=90^0\)
\(\widehat{AFH}=90^0\)
\(\widehat{AEH}=90^0\)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=EF(hai đường chéo)
\(\left\{{}\begin{matrix}\widehat{DCA}=\widehat{HCA}\\\widehat{DCA}+\widehat{DAC}=90^0\\\widehat{HCA}+\widehat{HBA}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{HBA}=\widehat{DAC}\)
\(\left\{{}\begin{matrix}\widehat{DAC}+\widehat{BAE}=90^0\\\widehat{HBA}+\widehat{HAB}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{BAE}=\widehat{HAB}\)
Có \(\left\{{}\begin{matrix}AH=AE=R\\\widehat{BAE}=\widehat{HAB}\\\text{AB chung}\end{matrix}\right.\) \(\Rightarrow\Delta AHB=\Delta AEB\)
\(\Rightarrow\widehat{E}=\widehat{H}=90^0\Rightarrow BE\) là tiếp tuyến