Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-1=0\\\sqrt{y-1}-1=0\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\\\sqrt{z-2}-1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-1=0\\\sqrt{y-1}-1=0\Leftrightarrow\\\sqrt{z-2}-1=0\end{cases}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)
vậy \(S=x+y=1+2=3\)
a) DK: x>=2; y>=3; z>=5
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-2\sqrt{y-3}\cdot2+4\right)+\left(z-5-2\sqrt{z-5}\cdot3+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)(*)
VT(*) >= 0 với mọi x;y;z TMĐK nên để thỏa mãn (*) thì:
\(\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}}\)
b) x;y;z là nghiệm của PT: \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\left(1\right)\) (1)=> đk: x >=0; y >= 1 ; z >= 2.
Ta có:
- \(\left(\sqrt{x}-1\right)^2\ge0\Rightarrow x-2\sqrt{x}+1\ge0\Rightarrow\sqrt{x}\le\frac{x+1}{2}\)(a)
- Tương tự: \(\sqrt{y-1}\le\frac{y-1+1}{2}=\frac{y}{2}\) (b)
- và: \(\sqrt{z-2}\le\frac{z-2+1}{2}=\frac{z-1}{2}\) (c)
- Do đó: \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+1+y+z-1}{2}=\frac{x+y+z}{2}\)hay VT(1) <= VP(1) với mọi x;y;z.
Vậy để (1) thỏa mãn thì dấu "=" xảy ra hay các BĐT (a); (b); (c) xảy ra. Khi đó, x = 1; y = 2; z = 3
Ta có : \(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
\(\Rightarrow A^2=\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\)
Theo BĐT Bu - nhi - a - cốp - xki ta có :
\(A^2=\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\le\left(1^2+1^2+1^2\right)\left[2\left(x+y+z\right)\right]=3.2=6\)
\(\Rightarrow A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\) khi \(x=y=z=\dfrac{1}{3}\)
\(A\le\sqrt{3\left(x+y+y+z+z+x\right)}=\sqrt{6\left(x+y+z\right)}\le\sqrt{6.\sqrt{3\left(x^2+y^2+z^2\right)}}=\sqrt{6\sqrt{3}}\)
\(A_{max}=\sqrt{6\sqrt{3}}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
Do \(x^2+y^2+z^2=1\Rightarrow0\le x;y;z\le1\)
\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow x+y+z\ge x^2+y^2+z^2=1\)
\(A^2=2\left(x+y+z\right)+2\sqrt{\left(x+y\right)\left(x+z\right)}+2\sqrt{\left(x+y\right)\left(y+z\right)}+2\sqrt{\left(y+z\right)\left(z+x\right)}\)
\(A^2=2\left(x+y+z\right)+2\sqrt{x^2+xy+yz+zx}+2\sqrt{y^2+xy+yz+zx}+2\sqrt{z^2+xy+yz+zx}\)
\(A^2\ge2\left(x+y+z\right)+2\sqrt{x^2}+2\sqrt{y^2}+2\sqrt{z^2}=4\left(x+y+z\right)\ge4\)
\(\Rightarrow A\ge2\)
\(A_{min}=2\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị
Áp dụng bđt côsi ta có:
\(\hept{\begin{cases}\sqrt{\left(x+y\right)4}\le\frac{x+y+4}{2}\left(1\right)\\\sqrt{\left(z+y\right)4}\le\frac{y+z+4}{2}\left(2\right)\\\sqrt{\left(z+x\right)4}\le\frac{z+x+4}{2}\left(3\right)\end{cases}}\)
Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\)ta được:
\(2P\le x+y+z+6=12\)
\(\Leftrightarrow p\le6\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z=2\)
Vậy \(P_{max}=6\)\(\Leftrightarrow x=y=z=2\)
Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)
Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)
\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)
\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)
\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)
\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)
Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1
Ta có : \(A^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Áp dụng BĐT Cô-si cho 4 số dương,ta có ;
\(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2.x^2.y.z}{yz}}=4x\)
Tương tự : ....
\(\Rightarrow A^2\ge4\left(x+y+z\right)-\left(x+y+z\right)=3\left(x+y+z\right)\ge36\)
\(\Rightarrow A\ge6\)
Dấu "=" xảy ra khi x = y = z = 4
Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)\rightarrow\left(a;b;c\right)\)
Khi đó \(a^2+b^2+c^2\ge12\) ta cần tìm GTNN của \(A=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\left(a+b+c\right)}\)
Ta có:\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
Mà \(\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(a^2+b^2+c^2\right)\) ( cơ bản )
\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{3\left(a^2+b^2+c^2\right)}=12\)
\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge12-\left(a+b+c\right)\)
Chứng minh được \(a+b+c\le6\) là OKE nhưng có vẻ không ổn lắm :))
Nếu đề bài yêu cầu Max thì đây nhé :)
Áp dụng bđt Bunhiacopxki , ta có \(A^2=\left(1.\sqrt{x}+1.\sqrt{y}+1.\sqrt{z}\right)^2\le\left(1^2+1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]=3\left(x+y+z\right)=3\)
\(\Rightarrow\left|A\right|\le\sqrt{3}\Rightarrow0\le A\le\sqrt{3}\)
Vậy MAX A = \(\sqrt{3}\) khi x = y = z = 1/3
Bài này không tìm được MIN nhé.