K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

ta có \(2x^2+2xy+2y^2+2x-2y+2=0\)

 <=>\(x^2+2xy+y^2+x^2+2x+1+y^2-2y+1=0\)

  <=>\(\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

<=>\(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

thay vào, ta có M=\(0^{30}+\left(-1+2\right)^{12}+\left(1-1\right)^{2017}=1\)

Vậy M=1 

^_^

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

30 tháng 12 2017

Ta có : x2 + xy + y2 + x - y + 1 = 0

=> 2( x2 + xy + y2 + x - y + 1) = 0

=> 2x2 + 2xy + 2y2 + 2x - 2y + 2 = 0

=> x2 + 2xy + y2 + x2 + 2x + 1 + y2 - 2y + 1 = 0

=> ( x + y)2 + ( x + 1)2 + ( y - 1)2 = 0

Suy ra :

* x + y = 0 => x = -y

* x + 1 = 0 => x = -1

* y - 1 = 0 => y = 1

Từ đó , ta có :

M = ( x + y)30 + ( x + 2)12 + ( y - 1)2017

M = ( -y + y )30 + ( 2 - 1)12 + ( 1 - 1)2017

M = 1

16 tháng 10 2023

Đẳng thức: \(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Thay vào \(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\) ta được:

\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}=\left(-1\right)^{2008}=1\)

16 tháng 10 2023

Ta có:

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow x^2+4x^2+y^2+4y^2+8xy-2x+2y+1+1=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+2y+1\right)+\left(4x^2+8xy+4y^2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(2x+2y\right)^2=0\)  

\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2=0\)

Mà: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\\4\left(x+y\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) 

Thay giá trị x và y vào M ta có:

\(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)

\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}\)

\(M=0^{2007}+\left(-1\right)^{2008}+0^{2009}\)
\(M=\left(-1\right)^{2008}\)

\(M=1\)

\(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>x=1 và y=-1

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)

8 tháng 10 2023

E kh hiểu lắm ạ="))

12 tháng 11 2017

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :

\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)

7 tháng 1 2021

2x2 + 2y2 + 3xy - x + y + 1 = 0

2x2 + 2y2 + 4xy - xy - x + y + 1 = 0

(2x2 + 2y2 + 4xy) + (-xy - x) + (y + 1) = 0

2(x + y)2 - x(y + 1) + (y + 1) = 0

2(x + y)2 + (y + 1)(1 - x) = 0

Do (x + y)2 \(\ge0\)

\(\Rightarrow\) 2(x + y)2 \(\ge0\)

\(\Rightarrow\) 2(x + y)2 + (y + 1)(1 - x) = 0 \(\Leftrightarrow\) (y + 1)(1 - x) = 0

\(\Rightarrow y+1=0;1-x=0\)

*) y + 1 = 0

y = -1

*) 1 - x = 0

x = 1

Với x = 1; y = -1, ta có:

B = [1 + (-1)]2018 + (1 - 2)2018 + (-1 - 1)2018

= 1 + 22018

30 tháng 12 2017

\(x^2+xy+y^2+x-y+1=0\)

\(\Leftrightarrow2x^2+2xy+2y^2+2x-2y+2=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\) (*)

\(\left(x+y\right)^2\ge0;\left(x+1\right)^2\ge0;\left(y-1\right)^2\ge0\)

(*) \(\Leftrightarrow\left(x+y\right)^2=0;\left(x+1\right)^2=0;\left(y-1\right)^2=0\)

\(\Leftrightarrow x+y=0;x+1=0;y-1=0\)

\(\Rightarrow x+2=1\)

\(\Rightarrow\left(x+y\right)^{30}+\left(x+2\right)^{12}+\left(y-1\right)^{2017}=0+1+0=1\)

21 tháng 12 2019

mk ko vt lại đề 

=> (4x^2+8xy+4y^2)+(x^2-2x+1)+(y^2+2y+1)=0

=>(2x+2y)^2+(x-1)^2+(y+1)^2=0

...... phần này bn tự làm đc

=>x=1,y=-1

thay vào là dc

21 tháng 12 2019

Ta có : \(5x^2+5y^2+8xy-2x+2y+2=0\)

=> \(\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=0\)

=> \(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta có \(\left(2x+2y\right)^2\ge0\forall x,y\)   ,   \(\left(x-1\right)^2\ge0\forall x\)   ,   \(\left(y+1\right)^2\ge0\forall x\)

=> \(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\forall x,y\)

=> \(\hept{\begin{cases}x+y=0\\x-1=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}}\)

Thay vào M ta có:

\(M=0^{2016}+\left(1-2\right)^{2018}+\left(-1+1\right)^{2019}=1\)