Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+xy+y^2+x-y+1=0\)
\(\Leftrightarrow2x^2+2xy+2y^2+2x-2y+2=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\) (*)
Vì \(\left(x+y\right)^2\ge0;\left(x+1\right)^2\ge0;\left(y-1\right)^2\ge0\)
(*) \(\Leftrightarrow\left(x+y\right)^2=0;\left(x+1\right)^2=0;\left(y-1\right)^2=0\)
\(\Leftrightarrow x+y=0;x+1=0;y-1=0\)
\(\Rightarrow x+2=1\)
\(\Rightarrow\left(x+y\right)^{30}+\left(x+2\right)^{12}+\left(y-1\right)^{2017}=0+1+0=1\)
ta có \(2x^2+2xy+2y^2+2x-2y+2=0\)
<=>\(x^2+2xy+y^2+x^2+2x+1+y^2-2y+1=0\)
<=>\(\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
<=>\(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
thay vào, ta có M=\(0^{30}+\left(-1+2\right)^{12}+\left(1-1\right)^{2017}=1\)
Vậy M=1
^_^
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :
\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)
X3 + Y3 + Z3 = 3XYZ
<=> X3 + Y3 + Z3 - 3XYZ = 0
<=> ( X3 + Y3 ) + Z3 - 3XYZ = 0
<=> ( X + Y )3 - 3XY( X + Y ) + Z3 - 3XYZ = 0
<=> [ ( X + Y )3 + Z3 ] - 3XY( X + Y + Z ) = 0
<=> ( X + Y + Z )[ ( X + Y )2 - ( X + Y ).Z + Z2 - 3XY ] = 0
<=> ( X + Y + Z )( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0
<=> \(\orbr{\begin{cases}X+Y+Z=0\\X^2+Y^2+Z^2-XY-YZ-XZ=0\end{cases}}\)
+) X + Y + Z = 0 => \(\hept{\begin{cases}X+Y=-Z\\Y+Z=-X\\X+Z=-Y\end{cases}}\)
KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(\frac{X+Y}{Y}\right)\left(\frac{Y+Z}{Z}\right)\left(\frac{X+Z}{X}\right)=\frac{-Z}{Y}\cdot\frac{-X}{Z}\cdot\frac{-Y}{X}=-1\)
+) X2 + Y2 + Z2 - XY - YZ - XZ = 0
<=> 2( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0
<=> 2X2 + 2Y2 + 2Z2 - 2XY - 2YZ - 2XZ = 0
<=> ( X2 - 2XY + Y2 ) + ( Y2 - 2YZ + Z2 ) + ( X2 - 2XZ + Z2 ) = 0
<=> ( X - Y )2 + ( Y - Z )2 + ( X - Z )2 = 0 (1)
DỄ DÀNG CHỨNG MINH (1) ≥ 0 ∀ X,Y,Z
DẤU "=" XẢY RA <=> X = Y = Z
KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(1+\frac{Y}{Y}\right)\left(1+\frac{Z}{Z}\right)\left(1+\frac{X}{X}\right)=2\cdot2\cdot2=8\)
\(2P-2=2\left(xy+yz+zx\right)-2\left(x^2+y^2+z^2\right)+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)
\(=-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)
\(=\left(x-y\right)^2\left(z^2-1\right)+\left(y-z\right)^2\left(x^2-1\right)+\left(z-x\right)^2\left(y^2-1\right)\le0\)
\(\text{( Do }x^2;y^2;z^2\le1\text{)}\)
\(\Rightarrow2P\le2\Rightarrow P\le1\)
\(\text{Dấu bằng xảy ra khi và chỉ khi 1 trong 3 số bằng 1; 2 số còn lại bằng 0.}\)
Đk: x, y \(\ne\)0
Ta có: P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)
P = \(\frac{2}{x}-\left(\frac{x^3+\left(y^2-x^2\right)\left(x+y\right)-y^3}{xy\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)
P = \(\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)\left(x+y\right)^2}{xy\left(x+y\right)}\cdot\frac{x+y}{x^2+xy+y^2}\)
P = \(\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2-x^2-2xy-y^2\right)}{xy\left(x^2+xy+y^2\right)}\)
P = \(\frac{2}{x}-\frac{-xy\left(x-y\right)}{xy\left(x^2+xy+y^2\right)}=\frac{2}{x}+\frac{x-y}{x^2+xy+y^2}=\frac{2x^2+2xy+2y^2+x^2-xy}{x\left(x^2+xy+y^2\right)}\)
P = \(\frac{3x^2+xy+2y^2}{x\left(x^2+xy+y^2\right)}\)
b) Ta có: x2 + y2 + 10 = 2x - 6y
<=> x2 - 2x + 1 + y2 + 6y + 9 = 0
<=> (x - 1)2 + (y + 3)2 = 0
<=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Do đó: P = \(\frac{3.1^2-3.1+2.\left(-3\right)^2}{1\left(1^2-3+\left(-3\right)^2\right)}=\frac{18}{7}\)
Ta có : x2 + xy + y2 + x - y + 1 = 0
=> 2( x2 + xy + y2 + x - y + 1) = 0
=> 2x2 + 2xy + 2y2 + 2x - 2y + 2 = 0
=> x2 + 2xy + y2 + x2 + 2x + 1 + y2 - 2y + 1 = 0
=> ( x + y)2 + ( x + 1)2 + ( y - 1)2 = 0
Suy ra :
* x + y = 0 => x = -y
* x + 1 = 0 => x = -1
* y - 1 = 0 => y = 1
Từ đó , ta có :
M = ( x + y)30 + ( x + 2)12 + ( y - 1)2017
M = ( -y + y )30 + ( 2 - 1)12 + ( 1 - 1)2017
M = 1