Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a.b.c.d-a =a.[b.c.d-1]=2005
a.b.c.d-b =b.[a.c.d-1]=2009
a.b.c.d-c =c.[b.a.d-1]=2011
a.b.c.d-d =d.[b.c.a-1]=2015
Câu 2/ Gọi ước chung lớn nhất của a,c là q thì ta có:
a = qa1; c = qc1 (a1, c1 nguyên tố cùng nhau).
Thay vào điều kiện ta được:
qa1b = qc1d
\(\Leftrightarrow\)a1b = c1d
\(\Rightarrow\) d\(⋮\)a1
\(\Rightarrow\)d = d1a1
Thế ngược lại ta được: b = d1c1
Từ đây ta có:
A = an + bn + cn + dn = (qa1)n + (qc1)n + (d1a1)n + (d1c1)n
= (a1 n + c1 n)(q n + d1 n)
Vậy A là hợp số
\(D=\frac{4}{1^2}+\frac{4}{3^2}+....+\frac{4}{2015^2}\)
\(D=4+2.\left(\frac{2}{3.3}+\frac{2}{5.5}+....+\frac{2}{2015.2015}\right)\)
\(D< 4+2.\left(\frac{2}{1.3}+\frac{2}{3.5}+.....+\frac{2}{2013.2015}\right)\)
\(D< 4+2.\left(1-\frac{1}{2015}\right)\)
\(D< 6\)
mink chỉ làm được vậy thôi bạn ạ, sorry
\(a+b=c+d\Rightarrow a^2+2ab+b^2=c^2+2cd+d^2\)
\(\Rightarrow ab=cd\Rightarrow\left(a-b\right)^2=\left(c-d\right)^2\Rightarrow\left|a-b\right|=\left|c-d\right|\)
\(\Rightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}\Rightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}}\)( kết hợp gt ) ....
\(\Rightarrow\)đpcm