Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a + 1 và b + 2009 chia hết cho 6 nên a + b + 2010 chia hết cho 6.
Mà 2010 chia hết cho 6 nên a + b chia hết cho 6.
4a không chia hết cho 6 nên 4a + a + b không chia hết cho 6.
Bạn xem lại đề.
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
Bài 2.
\(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮3\)
( 3 số nguyên liên tiếp chia hết cho 3)
\(P-\left(a_1+a_2+a_3+...+a_n\right)=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\) chia hết cho 3
=> P chia hết cho 3
+ Theo bài, ta có: a+b+c chia hết cho 6
=> a+b+c=6
+ M=(a+b)(b+c)(c+a)-2abc
M=(6-c)(6-a)(6-b)-2abc
M=(12-6a-6c+ac)(6-b)-2abc
M=72-12b-12a+6ab-12c+6cb+6ac-abc-2abc
M=72-12(a+b+c)+6(ab+cb+ac)-3abc
+ có:72 chia hết cho 6
12 chia hết cho 6
6 chia hết cho 6
=> M chia hết cho 6
Vậy...
Câu hỏi của Nguyễn Thanh Hà - Toán lớp 7 - Học toán với OnlineMath tham khảo
đồng dư nhé bạn.
Vì a là số nguyên dương nên \(4^a\equiv1\left(mod3\right)\)
\(\Rightarrow4^a+2\equiv0\left(mod3\right)\)
Mà \(4^a+2\equiv0\left(mod2\right)\)
Mặt khác \(\left(2,3\right)=1\)
\(\Rightarrow4^a+2⋮6\)
Khi đó \(4^a+a+b=\left(4^a+2\right)+\left(a+1\right)+\left(b+2007\right)-2010⋮6\)
Vậy với a,b là các số nguyên dương và a+1;b+2007 chia hết cho 6 thì \(4^a+a+b\)chia hết cho 6
Ta có \(P=a^3+b^3+c^3\)
\(P=\left(a^3-a\right)+\left(b^3-7b\right)+\left(2c^3-2024c\right)+a+7b+2024c-c^3\)
\(P=a\left(a^2-1\right)+b\left(b^2-7\right)+2c\left(c^2-1012\right)\) ( do \(a+7b+2024c=c^3\))
Dễ thấy \(a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\) là tích của 3 số nguyên liên tiếp nên chia hết cho 6.
Xét \(f\left(b\right)=b\left(b^2-7\right)\). Dễ thấy \(f\left(b\right)\) chẵn với mọi số nguyên \(b\). Nếu \(b⋮3\Rightarrow f\left(b\right)⋮3\). Nếu \(b⋮̸3\) thì \(b^2\equiv1\left[3\right]\) \(\Rightarrow b^2-7⋮3\) \(\Rightarrow f\left(b\right)⋮3\). Vậy \(f\left(b\right)⋮3\) với mọi số nguyên \(b\). Vậy thì \(f\left(b\right)⋮6\)
Xét \(g\left(c\right)=2c\left(c^2-1012\right)\). Cũng dễ thấy \(g\left(c\right)\) chẵn. Nếu \(c⋮3\) thì \(g\left(c\right)⋮3\). Nếu \(c⋮̸3\) thì \(c^2\equiv1\left[3\right]\) \(\Rightarrow c^2-1012⋮3\) \(\Rightarrow g\left(c\right)⋮3\). Thế thì \(g\left(c\right)⋮6\) với mọi số nguyên \(c\)
Từ đó \(P=a\left(a^2-1\right)+f\left(b\right)+g\left(c\right)⋮6\), đpcm.
Ta có a3 - 5b3
= (a3 + b3) - 6b3
= (a + b)(a2 - ab + b2) - 6b3
Vì \(\hept{\begin{cases}\left(a+b\right)\left(a^2-ab+b^2\right)⋮6\left(\text{Vì }a+b⋮6\right)\\6b^3⋮6\end{cases}}\Rightarrow a^3-5b^3⋮6\)