K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

NV
29 tháng 7 2021

\(1=2\left(\dfrac{9}{x}+\dfrac{1}{y}\right)\ge2.\dfrac{\left(3+1\right)^2}{x+y}=\dfrac{32}{x+y}\)

\(\Rightarrow x+y\ge32\)

\(A_{min}=32\) khi \(\left(x;y\right)=\left(24;8\right)\)

19 tháng 11 2021

Tham khảo: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM

11 tháng 5 2023

Ta có \(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(\dfrac{\left(a+b\right)^2}{2}\right)^2}{2}=\dfrac{\left(a+b\right)^4}{8}\). Áp dụng cho biểu thức A, suy ra \(A\ge\dfrac{\left(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\right)^4}{8}\). Ta tìm GTNN của \(P=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\). Ta có 

\(P=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2\)

\(P\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}\left(\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}{2}\right)+2\)

    \(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}.\left(\dfrac{4^2}{2}\right)+2\) \(=\dfrac{21}{2}\). Do đó \(P\ge\dfrac{21}{2}\) \(\Leftrightarrow A\ge\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\). Vậy GTNN của A là \(\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\), ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{2}\)

 

11 tháng 5 2023

Gợi ý: \(\dfrac{a^4+b^4}{2}\ge\left(\dfrac{a+b}{2}\right)^4\)

Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có: \({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\) Bài 2: Chứng minh rằng với mọi số thực x,y ta có: \(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\) Bài 3: Cho x,y,z thuộc R. Chứng minh rằng: \(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\) Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\) Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq...
Đọc tiếp

Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có:

\({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\)

Bài 2: Chứng minh rằng với mọi số thực x,y ta có:

\(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\)

Bài 3: Cho x,y,z thuộc R. Chứng minh rằng:

\(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\)

Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\)

Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq xy\)

Bài 6: Cho x,y>=1. Chứng minh rằng: \({1\over 1+x^2}+{1\over 1+y^2}\geq {2\over 1+xy}\)

Bài 7: Chứng minh rằng với mọi số thực a,b ta có:

\(2(a^4+b^4)\geq ab^3+a^3b+2a^2b^2\)

Bài 8: Cho hai số thực x,y khác không. Chứng minh rằng:

\({4x^2y^2\over (x^2+y^2)^2}+{x^2\over y^2}+{y^2\over x^2}\geq 3\)

Bài 9: Cho các số thực a,b cùng dấu. Chứng minh bất đẳng thức:

\(({(a^2+b^2)\over 2})^3\leq({(a^3+b^3)\over 2})^2\)

Bài 10: Cho các số thực dương a,b. Chứng minh các bất đẳng thức sau:

\({a^2b\over(2a^3+b^3)}+{2\over 3} \leq {(a^2+2ab)\over (2a^2+b^2)}\)

Bài 11: Cho các số thực a,b không đồng thời bằng 0. Chứng minh:

\({2ab\over (a^2+4b^2)}+{b^2\over (3a^2+2b^2)}\leq {3\over 5}\)

@Akai Haruma

12
12 tháng 6 2018

Bài 1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy

⇒ x2 + y2 ≥ 2xy

\(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\) ≥ 2

\(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2

⇒ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\)) ≥ 6 ( 1)

CMTT : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\)\(6\) ( 2)

Từ ( 1 ; 2) ⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\))

Đẳng thức xảy ra khi : x = y

12 tháng 6 2018

Bài 4. Do : a ≥ 4 ; b ≥ 4 ⇒ ab ≥ 16 ( * ) ; a + b ≥ 8 ( ** )

Áp dụng BĐT Cauchy , ta có : a2 + b2 ≥ 2ab = 2.16 = 32 ( *** )

Từ ( * ; *** ) ⇒ a2 + b2 + ab ≥ 16 + 32 = 48 ( 1 )

Từ ( ** ) ⇒ 6( a + b) ≥ 48 ( 2)

Từ ( 1 ; 2 ) ⇒a2 + b2 + ab ≥ 6( a + b)

Đẳng thức xảy ra khi a = b = 4