K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2016

Ta có: \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+1+1+\frac{1}{x^2y^2}\)\(\Rightarrow\frac{x^4y^4+2x^2y^2+1}{x^2y^2}=\frac{\left(x^2y^2+1\right)^2}{x^2y^2}=\left(xy+\frac{1}{xy}\right)^2\)\(Tac\text{ó}:xy+\frac{1}{xy}=xy+\frac{1}{16xy}+\frac{15}{16xy}\)\(\text{ \text{áp} d\text{ụng} b\text{đ}t c\text{ô} si ta c\text{ó}: }\)

Áp dụng bddt cô si ta có :\(xy+\frac{1}{16xy}\ge2\sqrt{\frac{xy.1}{16xy}}=\frac{2.1}{4}=\frac{1}{2}\)

\(xy\le\frac{\left(x+y\right)^{2\Rightarrow}}{4}\Rightarrow xy\le\frac{1}{4}\Rightarrow\)\(\frac{1}{16xy}\ge\frac{4}{16}\Leftrightarrow\)\(\frac{15}{16xy}\le\frac{60}{16}=\frac{15}{4}\)\(\Rightarrow M=\left(xy+\frac{1}{xy}\right)^2\ge\left(\frac{1}{2}+\frac{15}{4}\right)^2=\left(\frac{17}{4}\right)^2=\frac{289}{16}\)

Dấu bằng xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

29 tháng 11 2019

Đặt \(A=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=y^2\left(x^2+\frac{1}{y^2}\right)+\frac{1}{x^2}\left(x^2+\frac{1}{y^2}\right)\)

\(=x^2y^2+1+1+\frac{1}{x^2y^2}\)

\(=x^2y^2+\frac{1}{x^2y^2}+2\)

\(=2+\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}\)

Áp dụng BĐT Cauchy cho 2 số không âm:

\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)

C/m bđt phụ : \(1=\left(x+y\right)^2\ge4xy\)

\(\Rightarrow16x^2y^2\le1\Leftrightarrow256x^2y^2\le16\Leftrightarrow\frac{255}{256x^2y^2}\ge\frac{255}{16}\)

\(\Rightarrow A\ge2+\frac{1}{8}+\frac{255}{16}=\frac{289}{16}\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x^2y^2=\frac{1}{256x^2y^2}\\x-y=0\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\))

ai lm hộ mk vs

b1: 

ĐKXĐ: \(x\ne0;x\ne\pm2\)

Ta có : \(A=\left(\frac{4x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{8x^2}{x^2-4}\right)\left(\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x^2-8x-8x^2}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{x-1-2x+4}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{3-3x}{x\left(x-2\right)}\right)\)

\(=\frac{12\left(x-1\right)}{x-2}\)

Vậy ....

Ta có : \(A< 0\Rightarrow\frac{12\left(x-1\right)}{x-2}< 0\)

Đến đây xét 2 TH 12(x-1)<0 & (x-2)>0 hoặc 12(x-1)>0 & (x-2)<0

NV
27 tháng 1 2021

\(B\ge\dfrac{4\left(x+y+z\right)\left(x+y\right)}{\left(x+y\right)^2zt}=\dfrac{4\left(x+y+z\right)}{\left(x+y\right)zt}\ge\dfrac{16\left(x+y+z\right)}{\left(x+y+z\right)^2t}\)

\(B\ge\dfrac{16}{\left(x+y+z\right)t}\ge\dfrac{64}{\left(x+y+z+t\right)^4}=64\)

\(B_{min}=64\) khi \(\left(x;y;z;t\right)=\left(\dfrac{1}{8};\dfrac{1}{8};\dfrac{1}{4};\dfrac{1}{2}\right)\)

28 tháng 1 2021

Áp dụng BĐT Cô si ta có :

+) \(x+y\ge2\sqrt{xy}\)

+) \(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)

+) \(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\) 

Nhân từng vế với vế của các BĐT trên ta có :

\(\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

\(\Leftrightarrow2\left(x+y\right)\left(x+y+z\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(x+y+z\right)}\ge4\sqrt{xyzt}\)

\(\Leftrightarrow\left(x+y\right)\left(x+y+z\right)\ge16xyzt\)

\(\Leftrightarrow B=\dfrac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge16\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x+y=z\\x+y+z=t\\x+y+z+t=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y=\dfrac{1}{4}\\z=\dfrac{1}{2}\\t=1\end{matrix}\right.\)

Vậy...

\(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>x=1 và y=-1

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)

8 tháng 10 2023

E kh hiểu lắm ạ="))

16 tháng 10 2023

Đẳng thức: \(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Thay vào \(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\) ta được:

\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}=\left(-1\right)^{2008}=1\)

16 tháng 10 2023

Ta có:

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow x^2+4x^2+y^2+4y^2+8xy-2x+2y+1+1=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+2y+1\right)+\left(4x^2+8xy+4y^2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(2x+2y\right)^2=0\)  

\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2=0\)

Mà: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\\4\left(x+y\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) 

Thay giá trị x và y vào M ta có:

\(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)

\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}\)

\(M=0^{2007}+\left(-1\right)^{2008}+0^{2009}\)
\(M=\left(-1\right)^{2008}\)

\(M=1\)

3 tháng 5 2020

ctv hỏi bài

3 tháng 5 2020

Thái đức anh Ơ CTV là không được hỏi bài à ??? Bài này tôi làm ra lâu rồi,đăng lên chơi vui thôi nhé ! Không làm thì đừng có mà spam lung tung câu hỏi của tôi