K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
29 tháng 4 2019
Ta có :
\(x=\frac{ax}{yz}+\frac{b}{z}+\frac{c}{y}\)
\(y=\frac{a}{z}+\frac{by}{zx}+\frac{c}{x}\)
\(z=\frac{a}{y}+\frac{b}{x}+\frac{xy}{cz}\)
\(\Rightarrow\)\(x+y+z=\left(\frac{ax}{yz}+\frac{by}{zx}+\frac{cz}{xy}\right)+\frac{b+c}{x}+\frac{c+a}{y}+\frac{a+b}{z}>\frac{b+c}{z}+\frac{c+a}{y}+\frac{a+b}{z}\)
\(\ge\frac{\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2}{x+y+z}\)
\(\Leftrightarrow\)\(\left(x+y+z\right)^2>\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\Leftrightarrow\)\(x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\) ( đpcm )
5 tháng 10 2016
cái này là bđt bunhia thì fai bn mở sách ra tham khảo đi
Đầu tiên chứng minh:
\(\left(a^2x+b^2y+c^2z\right)\left(yz+zx+xy\right)\ge xyz\left(a+b+c\right)^2\)
\(=xyz\left(x+z+y\right)^2\ge3xyz\left(xy+yz+zx\right)\)
\(\Rightarrow a^2x+b^2y+c^2z\ge3xyz\)
Tương tự có:
\(x^2a+y^2b+z^2c\ge3abc\)
\(\Rightarrow\) ĐPCM