Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên chứng minh:
\(\left(a^2x+b^2y+c^2z\right)\left(yz+zx+xy\right)\ge xyz\left(a+b+c\right)^2\)
\(=xyz\left(x+z+y\right)^2\ge3xyz\left(xy+yz+zx\right)\)
\(\Rightarrow a^2x+b^2y+c^2z\ge3xyz\)
Tương tự có:
\(x^2a+y^2b+z^2c\ge3abc\)
\(\Rightarrow\) ĐPCM
Ta có :
\(x=\frac{ax}{yz}+\frac{b}{z}+\frac{c}{y}\)
\(y=\frac{a}{z}+\frac{by}{zx}+\frac{c}{x}\)
\(z=\frac{a}{y}+\frac{b}{x}+\frac{xy}{cz}\)
\(\Rightarrow\)\(x+y+z=\left(\frac{ax}{yz}+\frac{by}{zx}+\frac{cz}{xy}\right)+\frac{b+c}{x}+\frac{c+a}{y}+\frac{a+b}{z}>\frac{b+c}{z}+\frac{c+a}{y}+\frac{a+b}{z}\)
\(\ge\frac{\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2}{x+y+z}\)
\(\Leftrightarrow\)\(\left(x+y+z\right)^2>\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\Leftrightarrow\)\(x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\) ( đpcm )
\(\frac{ax+by+cz}{xy}=z\Rightarrow z=\frac{a}{y}+\frac{b}{x}+\frac{cz}{xy}>\frac{a}{y}+\frac{b}{x}\)
Tương tự có \(y>\frac{a}{z}+\frac{c}{x}\); \(x>\frac{b}{z}+\frac{c}{y}\)
\(\Rightarrow x+y+z>\frac{b+c}{x}+\frac{a+c}{y}+\frac{a+b}{z}=\frac{b+c}{x}+x+\frac{a+c}{y}+y+\frac{a+b}{z}+z-x-y-z\)
\(\Rightarrow2\left(x+y+z\right)>2\sqrt{b+c}+2\sqrt{a+c}+2\sqrt{a+b}\)
\(\Rightarrow x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)