K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

có thể áp dụng luôn công thức tổng quát của btp nhé
Tổng quát \(\frac{a_1^2}{x_1}+\frac{a_2^2}{x_2}+...+\frac{a_n^2}{x_n}\ge\frac{\left(a_1+a_2+...+a_n\right)^2}{x_1+x_2+...+x_n}\)(với x1,x2,...xn >0 )
phải c/m nhé 

1 tháng 8 2016

BTP :\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)(với mọi abxy, x,y>0) đây còn đc cọi bđt cauchy schwarz )
c/m k có gì khó. nhân chéo quy đồng ( tự c/m nhé )
Đặt \(A=\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\)
Áp dụng liên tục btp ta được \(A\ge\frac{\left(1+1\right)^2}{a+b}+\frac{2^2}{c}+\frac{4^2}{d}\ge\frac{\left(1+1+2\right)^2}{a+b+c}+\frac{4^2}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}=\frac{64}{a+b+c+d}\)(dpcm)
dấu = xảy ra khi và chỉ khi a=b=c/2=d/4

26 tháng 7 2016

\(1-\frac{a}{a+1}=\frac{1}{1+a}=\frac{c}{c+1}+\frac{b}{b+1}+\frac{d}{d+1}\Rightarrow\frac{1}{a+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\)

cmtt rồi nhân 3 cái lại vs nhau => đpcm

8 tháng 11 2019

dễmaf

8 tháng 11 2019

thay c=c.1=c(a+b+c)

=> ab+c=(c+a)(c+b)

lm tt cuối cùng sẽ ra

14 tháng 11 2016

Đề sai rồi

Nếu giả sử a = b =c = d = 2 thì

\(\frac{2}{2+1}+\frac{2}{2+1}+\frac{2}{2+1}+\frac{2}{2+1}=\frac{8}{3}>2\)

21 tháng 7 2020

Áp dụng bđt Cosi ta có: \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2;\frac{b^2}{b+c}+\frac{b+c}{4}\ge2;\frac{c^2}{c+d}+\frac{c+d}{4}\ge2\)\(;\frac{d^2}{d+a}+\frac{d+a}{4}\ge2\)

Cộng theo vế và a+b+c+d=1 ta có đpcm

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{a^2}{a+b}=\frac{a+b}{4};\frac{b^2}{b+c}=\frac{b+c}{4};\frac{c^2}{c+d}=\frac{c+d}{4};\frac{d^2}{d+a}=\frac{d+a}{4}\\\\a=b=c=1\end{cases}}\)

\(\Leftrightarrow a=b=c=d=\frac{1}{4}\)

21 tháng 7 2020

Bunyakovsky dạng phân thức

AH
Akai Haruma
Giáo viên
22 tháng 2 2017

Áp dụng BĐT Cauchy -Schwarz dạng cộng mẫu thôi:

\(\text{VT}=\frac{1^2}{a}+\frac{1^2}{b}+\frac{2^2}{c}+\frac{4^2}{d}\geq \frac{(1+1+2+4)^2}{a+b+c+d}=\frac{64}{a+b+c+d}=\text{VP}\)

Dấu bằng xảy ra khi \(a=b=\frac{c}{2}=\frac{d}{4}>0\)

22 tháng 2 2017

áp dụng BĐT cauchy-schwazs:

\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}=\frac{64}{a+b+c+d}\)

dấu = xảy ra khi \(\frac{1}{a}=\frac{1}{b}=\frac{2}{c}=\frac{4}{d}\Leftrightarrow a=b=\frac{c}{2}=\frac{d}{4}\)

đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)

\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)

\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)

22 tháng 2 2017

áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)(bđt svacxo) ta có :

VT= \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}\)\(\frac{64}{a+b+c+d}\)=VP (đpcm)

dấu = xảy ra <=>a=b=1; c=2 ; d=4

22 tháng 2 2017

Dễ dàng CM BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b},\forall a,b>0\)

Áp dụng liên tục ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{4}{a+b}+\frac{4}{c}+\frac{16}{d}\ge4.\frac{4}{a+b+c}+\frac{16}{d}\ge16.\frac{4}{a+b+c+d}=\frac{64}{a+b+c+d}\)

dấu = xảy ra <=> a+b=c, a+b+c=d, a=b

ĐPCM

15 tháng 6 2017

Ẹt số xui đưa link cũng bị duyệt

Áp dụng BĐT AM-GM ta có: 

\(\frac{1}{d+1}=1-\frac{d}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)

\(\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\). TƯơng tự cho 3 BĐT còn lại

\(\frac{1}{a+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{b+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{c+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)

Nhân theo vế 4 BDT trên ta có: 

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\right)^3}\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

Hay ta có ĐPCM

14 tháng 11 2016

áp dụng bất đẳng thức:\(\frac{1}{a}\)+\(\frac{1}{b}\)=>\(\frac{4}{a+b}\)(áp dụng 2 cái đầu trc,rồi lấy KQ đó áp dụng típ vào cái thứ 3,rồi cái cuối

15 tháng 11 2016

Ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}=\frac{64}{a+b+c+d}\)