Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(-2\right)=4a-2b+c\)
\(f\left(3\right)=9a+3b+c\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=0\)
Tích 2 số đối nhau bé hơn hoặc bằng 0
=>dpcm 😀
nhờ bạn giúp mình giải bài với....!
Cho tam giác ABC nhọn (AB<AC). Các đường cao AE,BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H vẽ đường thẳng vuông góc với HM , a cắt AB,AC lần lượt tại I,K. gọi G là giao điểm cuarCH và AB. chứng minh:\(\frac{AH}{HE}+\frac{BH}{HF}+\frac{CH}{HG}< 6\)
giúp mình với nha! càng nhanh càng tốt bạn nhé! cảm ơn trước vậy.....
Đặt \(g(x)=10x\).
Ta có \(g\left(1\right)=10=f\left(1\right);g\left(2\right)=20=f\left(2\right);g\left(3\right)=30=f\left(3\right)\).
Từ đó \(\left\{{}\begin{matrix}f\left(1\right)-g\left(1\right)=0\\f\left(2\right)-g\left(2\right)=0\\f\left(3\right)-g\left(3\right)=0\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=Q\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\).
\(\Rightarrow f\left(x\right)=10x+Q\left(x\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
\(\Rightarrow f\left(8\right)+f\left(-4\right)=80+Q\left(x\right).7.6.5+\left(-40\right)+Q\left(x\right).\left(-5\right).\left(-6\right).\left(-7\right)=80-50=40\).
Đoạn cuối mình làm nhầm nhé.
Đáng lẽ phải cm Q(x) là đa thức dạng x + m, rồi biến đổi \(f\left(8\right)+f\left(-4\right)=80+Q\left(8\right).7.6.5+\left(-40\right)+Q\left(-4\right).\left(-5\right).\left(-6\right).\left(-7\right)=80-40+\left(m+8\right).7.6.5-\left(m-4\right).5.6.7=12.5.6.7+40=2560\).
Mình đánh vội nên chưa suy nghĩ kĩ.
Đặt \(g\left(x\right)=2014x\).
Ta có \(f\left(1\right)-g\left(1\right)=0;f\left(2\right)-g\left(2\right)=0;f\left(3\right)-g\left(3\right)=0\).
Do đó \(f\left(x\right)-g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)Q\left(x\right)\).
\(f\left(x\right)=2014x+\left(x-1\right)\left(x-2\right)\left(x-3\right)Q\left(x\right)\).
Do f(x) có bậc 4, hệ số cao nhất là 1 nên Q(x) là đa thức có dạng x + m.
Từ đó \(f\left(x\right)=2014x+\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x+m\right)\)
\(\Rightarrow f\left(-1\right)+f\left(5\right)=2014.\left(-1\right)+\left(-2\right).\left(-3\right).\left(-4\right)\left(m-1\right)+2014.5+4.3.2\left(m+5\right)=12228\).
f(0) = a . 0 + b = b
f(f(0)) = f(b) = a . b + b = ab + b
f(f(f(0))) = f(ab + b) = a . (ab + b) + b = a2b + ab + b
f(1) = a . 1 + b = a + b
f(f(1)) = f(a + b) = a . (a + b) + b = a2 + ab + b
f(f(f(1))) = f(a2 + ab + b) = a . (a2 + ab + b) + b = a3 + a2b + ab + b
a3 + a2b + ab + b = 29
a2b + ab + b = 2
=> (a3 + a2b + ab + b) - (a2b + ab + b) = 29 - 2
a3+ a2b + ab + b - a2b - ab - b = 27
a3 = 33
a = 3