K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 7 2021

1.2

a.

\(\overrightarrow{AB}=\left(4;-2\right)=2\left(2;-1\right)\Rightarrow\) đường thẳng AB nhận (1;2) là 1 vtpt

Phương trình đường thẳng AB:

\(1\left(x+1\right)+2\left(y-4\right)=0\Leftrightarrow x+2y-7=0\)

b.

Gọi M là trung điểm AB \(\Rightarrow M\left(1;3\right)\)

\(AB=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\) \(\Rightarrow AM=\dfrac{1}{2}AB=\sqrt{5}\)

Đường tròn đường kính AB có tâm M và bán kính \(R=AM=\sqrt{5}\) nên có pt:

\(\left(x-1\right)^2+\left(y-3\right)^2=5\)

NV
30 tháng 7 2021

1.1

a. \(\overrightarrow{CB}=\left(5;15\right)=5\left(1;3\right)\) ; \(\overrightarrow{CA}=\left(7;11\right)\)

Đường cao qua A vuông góc BC nên nhận (1;3) là 1 vtpt

Phương trình đường cao đi qua A có dạng:

\(1\left(x-4\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-13=0\)

Đường cao qua B vuông góc AC nhận (7;11) là 1 vtpt có dạng

\(7\left(x-2\right)+11\left(y-7\right)=0\Leftrightarrow7x+11y-91=0\)

Trực tâm H là giao điểm 2 đường cao nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+3y-13=0\\7x+11y-91=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=13\\y=0\end{matrix}\right.\)

\(\Rightarrow H\left(13;0\right)\)

3 tháng 5 2017

a)

– Tọa độ trọng tâm G của tam giác ABC là:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

– Tọa độ trực tâm H của tam giác ABC:

Cách 1:

+ Phương trình đường cao BD:

BD ⊥ AC ⇒ Đường thẳng BD nhận Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt

BD đi qua B(2; 7)

⇒ Phương trình đường thẳng BD: 7(x - 2) +11(y - 7) = 0 hay 7x + 11y – 91 = 0

+ Phương trình đường cao CE:

CE ⊥ AB ⇒ Đường thẳng CE nhận Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt

CE đi qua C(–3; –8)

⇒ Phương trình đường thẳng CE: 1(x + 3) – 2(y + 8)=0 hay x – 2y – 13 = 0.

Trực tâm H là giao điểm của BD và CE nên tọa độ của H là nghiệm của hpt:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Cách 2: Gọi H(x, y) là trực tâm tam giác ABC

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Từ (1) và (2) ta có hệ phương trình

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

b) Gọi T(x; y) là tâm đường tròn ngoại tiếp tam giác ABC

Khi đó TA = TB = TC = R.

+ TA = TB ⇒ AT2 = BT2

⇒ (x – 4)2 + (y – 3)2 = (x – 2)2 + (y – 7)2

⇒ x2 – 8x + 16 + y2 – 6y + 9 = x2 – 4x + 4 + y2 – 14y + 49

⇒ 4x – 8y = –28

⇒ x – 2y = –7 (1)

+ TB = TC ⇒ TB2 = TC2

⇒ (x – 2)2 + (y – 7)2 = (x + 3)2 + (y + 8)2

⇒ x2 – 4x + 4 + y2 – 14y + 49 = x2 + 6x + 9 + y2 + 16y + 64

⇒ 10x + 30y = –20

⇒ x + 3y = –2 (2)

Từ (1) và (2) ⇒ x = –5, y = 1 ⇒ T(–5 ; 1).

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

⇒ T, H, G thẳng hàng.

c) Tâm đường tròn ngoại tiếp ΔABC: T(–5; 1)

Bán kính đường tròn ngoại tiếp ΔABC:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy phương trình đường tròn ngoại tiếp tam giác ABC:

(x + 5)2 + (y – 1)2 = 85

21 tháng 4 2021

uBC(6;0)=>nAH(0,6) ( vì AH vuông góc với BC)

PTTQ của đg thẳng AH đi qua A là 

\(0\left(x-3\right)+6\left(y-0\right)=0< =>6y=0\)

b)\(d\left(C;AH\right)=R=\dfrac{\left|6.1\right|}{\sqrt[]{0^2+6^2}}=1\)

PT đg tròn tầm C tiếp xúc AH là 

\(\left(x-4\right)^2+\left(y-1\right)^2=1^2\)

1 tháng 5 2022

câu a cs gì đó sai rồi thì phải nAH Là =(6;0) luôn chứ

 

 

a: vecto AB=(1;-1); vecto AC=(2;1); vecto BC=(1;2)

AB có VTPT là (1;1)

Phương trình AB là;

1(x-1)+1(y+1)=0

=>x+y=0

AC có VTPT là (-1;2)

PT AC là:

-1(x-1)+2(y+1)=0

=>-x+1+2y+2=0

=>-x+2y+3=0

BC có VTPT là (-2;1)

PT BC là;

-2(x-2)+1(y+2)=0

=>-2x+y+6=0

b: AH có VTPT là (1;2)

Phương trình AH là:

1(x-1)+2(y+1)=0

=>x-1+2y+2=0

=>x+2y+1=0