K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(P\left(x\right)=2x^2-2x^4-4x-1+x^3\)

\(=-2x^4+x^3+2x^2-4x-1\)

\(Q\left(x\right)=x^3-4x-4-3x^4\)

\(=-3x^4+x^3-4x-4\)

b: \(P\left(x\right)=-2x^4+x^3+2x^2-4x-1\)

=>Bậc là 4

\(Q\left(x\right)=-3x^4+x^3-4x-4\)

=>Bậc là 4

c: P(x)+Q(x)

\(=-2x^4+x^3+2x^2-4x-1-3x^4+x^3-4x-4\)

\(=-5x^4+2x^3+2x^2-8x-5\)

Thu gọn và sắp xếp:

P(x) = x² + 5x^4 - 3x³ + x² + 4x^4 + 3x³ - x + 5

       = (5x^4 + 4x^4) + (- 3x³+ 3x³) + (x² + x²) - x + 5

       = 9x^4 + 2x² - x +5

Q(x)= x - 5x³ - x² - x^4 + 4x³ - x² - 3x - 1

       = -x^4 + (- 5x³ + 4x³) + (- x² - x²) + (x - 3x) - 1 

       = -x^4 - x³ -2x² - 2x - 1 

mik mới chỉ làm đc vz thui ak

14 tháng 8 2020

a, Ta có : \(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5\)

\(=2x^2+9x^4-x+5\)

\(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2+3x-1\)

\(=4x-x^3-2x^2-1-x^4\)

Sắp xếp : 

\(P\left(x\right)=9x^4+2x^2-x+5\)

\(Q\left(x\right)=-x^4-x^3-2x^2+4x-1\)

b, \(M\left(x\right)=9x^4+2x^2-x+5-x^4-x^3-2x^2+4x-1\)

\(=8x^4+3x+4\)Bậc : 4 

c, \(N\left(x\right)=18x^4+4x^2-2x+10+x^4+x^3+2x^2-4x+1\)

\(=19x^4+6x^2-6x+11\)

a: \(P\left(x\right)=5x^5-4x^4+2x^2+3x+6\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2+x+\dfrac{1}{4}\)

b: \(P\left(x\right)+Q\left(x\right)=4x^5-2x^4-2x^3+5x^2+4x+\dfrac{25}{4}\)

a: \(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)

Bậc là 5

\(Q\left(x\right)=-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)

Bậc là 5

b: H(x)=P(x)+Q(x)

\(=5x^5-4x^4-2x^3+4x^2+3x+6-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)

=10x+6,25

c: Để H(x)=0 thì 10x+6,25=0

hay x=-0,625

24 tháng 4 2016

a) P(x)= 2X5-2X4+3X2-X2-X-1

    Q(x)=x4+5X3-5X2-X2-1

b) 

    P(x)=   2X5  -2X4             +2X2    -X    -1

+

    Q(x)=           x4   +5X3   -6X2              -1

          =  2x- X4 +5X3  -4x2   -X -2

      P(x)=   2X5  -2X4              +2X2    -X    -1

-

    Q(x)=              x4   +5X3   -6X2              -1

          =  2X5 -3X4 -5X3   +8x2 -X 

22 tháng 3 2023

`a)`

\(P\left(x\right)=4x+3x^2+x^2+1-5x-2x\\ =\left(3x^2+x^2\right)+\left(4x-5x-2x\right)+1\\ =4x^2-3x+1\\ Q\left(x\right)=3x+x+7-5x^2+5x-11\\ =-5x^2+\left(3x+x+5x\right)+\left(7-11\right)\\ =-5x^2+9x-4\)

`b)`

Đa thức `P(x)` có :

Bậc `2`

Đa thức `Q(x)` có :

Bậc `2`

`c)`

\(P\left(x\right)+Q\left(x\right)=\left(4x^2-3x+1\right)+\left(-5x^2+9x-4\right)\\ =4x^2-3x+1-6x^2+9x-4\\ =\left(4x^2-5x^2\right)-\left(3x-9x\right)+\left(1-4\right)\\ =-x^2+6x-3\)

a: P(x)=4x^2+4x+1-7x=4x^2-3x+1

Q(x)=-5x^2+9x-4

b: P(x) có bậc 2

Q(x) có bậc 2

c: P(x)+Q(x)=4x^2-3x+1-5x^2+9x-4=-x^2+6x-3

9 tháng 8 2017

a)  \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)\(=\left(2x^3-x^3\right)+x^2+\left(3x-2x\right)+2=x^3+x^2+x+2\)

   \(Q\left(x\right)=4x^3-5x^2+3x-4x-3x^3+4x^2+1\) 

Q(x)  \(=\left(4x^3-3x^3\right)+\left(4x^2-5x^2\right)+\left(3x-4x\right)+1\)\(=x^3-x^2-x+1\)

b) \(P\left(x\right)+Q\left(x\right)=2x^3+3\)\(P\left(x\right)-Q\left(x\right)=2x^2+2x+1\)

16 tháng 4 2018

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x

=x^5+7x^4−9x^3−3x^2+x^2−1/4x

=x^5+7x^4−9x^3−2x^2−1/4x

Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4

=−x^5+5x^4−2x^3+x^2+3x^2−1/4

=−x^5+5x^4−2x^3+4x^2−1/4

b)

P(x)+Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4

=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4

=12x^4−11x^3+2x^2−1/4x−1/4

P(x)−Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4

=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4

=2x5+2x4−7x3−6x2−1/4x−1/4

c) Ta có

P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0

⇒x=0là nghiệm của P(x).

Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0

⇒x=0không phải là nghiệm của Q(x).

22 tháng 8 2023

a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)

\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)

\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)

\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)

\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)

\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)

\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)

\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)

a: \(P\left(x\right)=x-2x^2+3x^5+x^4+x-1\)

\(=3x^5+x^4-2x^2+2x-1\)

\(Q\left(x\right)=3-2x-2x^2+x^4-3x^5-x^4+4x^2\)

\(=-3x^5+2x^2-2x+3\)

b: P(x)+Q(x)

\(=3x^5+x^4-2x^2+2x-1-3x^5+2x^2-2x+3\)

\(=x^4+2\)

P(x)-Q(x)

\(=3x^5+x^4-2x^2+2x-1+3x^5-2x^2+2x-3\)

\(=6x^5+x^4-4x^2+4x-4\)