Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có a2 - 1 = (a+1)(a-1)
Xét tích (a-1)a(a+1) chia hết cho 3
Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3 (1)
Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)
Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8 (2)
Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )
c) C = mn(m^4-n^4)
* nếu m, hoặc n có số chia hết cho 5 => C chia hết cho 5
Xét m và n đều không chia hết cho 5, từ lí thuyết trên ta có:
m^4 chia 5 dư 1 và n^4 chia 5 dư 1 => (m^4 - n^4) chia 5 dư 1-1 = 0
tóm lại ta có C chia hết cho 5
* C = mn(m^4-n^4) = mn(m²-n²)(m²+n²)
nếu m hoặc n có số chẳn => C chia hết cho 2
nếu m và n cùng lẻ => m² và n² là hai số lẻ => m²-n² chẳn
tóm lại C chia hết cho 2
* nếu m, n có số chia hết cho 3 => C chia hết cho 3
nếu m và n đều không chia hết cho 3, từ lí thuyết trên ta có:
m² và n² chia 3 đều dư 1 => m²-n² chia hết cho 3
tóm lại C chia hết cho 3
Thấy C chia hết cho 5, 2, 3 là 3 số nguyên tố
=> C chia hết cho 5*2*3 = 30
e) E = 2n(16-n^4) = 2n(1-n^4 + 15) = 2n(1-n^4) + 30n = E' + 30n
từ câu d ta đã cứng mình D = n(n^4-1) chia hết cho 30
=> n(1-n^4) = -n(n^4-1) chia hết cho 30 => E' chia hết cho 30
=> E = E' + 30n chia hết cho 30
Nguồn: https://vn.answers.yahoo.com/question/index?qid=20100110182409AA4HkM5
\(a+\dfrac{1}{a}=\dfrac{a^2+1}{a}\ge\dfrac{2a}{a}=2;b+\dfrac{4}{b}=\dfrac{b^2+4}{b}\ge\dfrac{4b}{b}=4;c+\dfrac{9}{c}=\dfrac{c^2+9}{c}\ge\dfrac{6c}{c}=6\)
\(a+b+c+\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}=\left(a+\dfrac{1}{a}\right)+\left(b+\dfrac{4}{b}\right)+\left(c+\dfrac{9}{c}\right)\ge2+4+6=12\)
Câu 1:
a) Ta có: \(VT=x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)=VP(đpcm)
c) Ta có: \(VT=a\left(b+1\right)+b\left(a+1\right)\)
\(=ab+a+ab+b\)
\(=a+b+2ab\)(1)
Thay ab=1 vào biểu thức (1), ta được:
a+b+2(*)
Ta có: VP=(a+1)(b+1)=ab+a+b+1(2)
Thay ab=1 vào biểu thức (2), ta được:
1+a+b+1=a+b+2(**)
Từ (*) và (**) ta được VT=VP(đpcm)
Câu 2:
Ta có: \(\left(x-3\right)\left(x+x^2\right)+2\left(x-5\right)\left(x+1\right)-x^3=12\)
\(\Leftrightarrow x^2+x^3-3x-3x^2+2\left(x^2+x-5x-5\right)-x^3=12\)
\(\Leftrightarrow x^3-2x^2-3x+2x^2-8x-10-x^3-12=0\)
\(\Leftrightarrow-11x-22=0\)
\(\Leftrightarrow-11x=22\)
hay x=-2
Vậy: x=-2
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
\(\dfrac{a^2}{b-1}+\dfrac{b^2}{c-1}+\dfrac{c^2}{a-1}\ge12\)
\(\Leftrightarrow\dfrac{a^2}{b-1}-4+\dfrac{b^2}{c-1}-4+\dfrac{c^2}{a-1}-4\ge0\)
\(\Leftrightarrow\dfrac{a^2-4b+4}{b-1}+\dfrac{b^2-4c+4}{c-1}+\dfrac{c^2-4a+4}{a-1}\ge0\)
\(a;b;c>1\Leftrightarrow a-1;b-1;c-1>0\)
\(\Leftrightarrow a^2-4b+4+b^2-4c+4+c^2-4a+4\ge0\)
\(\Leftrightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2\ge0\) (Đúng)
\("="\Leftrightarrow a=b=c=2\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(A=1-\dfrac{1}{8}=\dfrac{7}{8}\)
Ta có: \(C=\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{51.52}\)C bé hơn\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{50.52}=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{50}-\frac{1}{52}\right)\)
C bé hơn \(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{52}\right)\)bé hơn\(\frac{1}{2}.\frac{1}{2}=\frac{1}{4}\)(đpcm)
xin lỗi nha mk ko biết viết kí hiệu bé hơn
mik cảm ơn nha