Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐKXĐ:\(\left\{{}\begin{matrix}2x-2\ne0\\2-2x^2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\1-x^2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x^2\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne\pm1\end{matrix}\right.\Leftrightarrow x\ne\pm1\)
b, \(C=\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}\)
\(\Rightarrow C=\dfrac{x}{2\left(x-1\right)}+\dfrac{x^2+1}{2\left(1-x^2\right)}\)
\(\Rightarrow C=\dfrac{x\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow C=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow C=\dfrac{x-1}{2\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow C=\dfrac{1}{2\left(x+1\right)}\)
c, \(C=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2\left(x+1\right)}=\dfrac{1}{2}\\ \Rightarrow\dfrac{1}{x+1}=1\\ \Rightarrow x+1=1\\ \Rightarrow x=0\)
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(C=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2x+2}\)
c: Để C=1/2 thì 2x+2=2
hay x=0
a) C có nghĩa ⇔\(\left\{{}\begin{matrix}2x-2\ne0\\2x^2-2\ne0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
b)C= \(\dfrac{x}{2x-2}-\dfrac{x^2+1}{2x^2-2}\)
= \(\dfrac{x\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)-\(\dfrac{x^2+1}{2\left(x+1\right)\left(x-1\right)}\)
= \(\dfrac{x^2+x}{2\left(x-1\right)\left(x+1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
= \(\dfrac{1}{2\left(x+1\right)}\)
c) Ta có x2-x=0 ⇒ \(\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Thay x=0 vào C= \(\dfrac{1}{2\left(x+1\right)}\) ⇒ C= \(\dfrac{1}{2}\)
Thay x= 1 vào C = \(\dfrac{1}{2\left(x+1\right)}\) ⇒ C= \(\dfrac{1}{4}\)
d) C= \(\dfrac{1}{2\left(x+1\right)}\)= \(\dfrac{-1}{2}\)
⇔-2(x+1)=2 ⇔ x=-2
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(C=\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}\)
\(=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right)-x^2-1}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}=\dfrac{1}{2x+2}\)
c: \(C=-\dfrac{1}{2}\)
=>\(\dfrac{1}{2x+2}=-\dfrac{1}{2}\)
=>2x+2=-2
=>2x=-4
=>x=-2(nhận)
d: Để C là số nguyên thì \(2x+2\inƯ\left(1\right)\)
=>\(2x+2\in\left\{1;-1\right\}\)
=>\(2x\in\left\{-1;-3\right\}\)
=>\(x\in\left\{-\dfrac{1}{2};-\dfrac{3}{2}\right\}\)
a: ĐKXĐ:\(x\notin\left\{2;0\right\}\)
b: \(C=\left(\dfrac{x\left(2-x\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{2-x^2+x}{x^2}\right)\)
\(=\dfrac{-x^3+4x^2-4x-4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}=\dfrac{x+1}{2x}\)
c: Thay x=2017 vào C, ta được:
\(C=\dfrac{2017+1}{2\cdot2017}=\dfrac{1009}{2017}\)
\(a,ĐK:x\ne\pm2\\ b,A=\dfrac{5x+10+14x-28-20}{2\left(x-2\right)\left(x+2\right)}=\dfrac{19\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}=\dfrac{19}{2\left(x+2\right)}\\ c,x=-\dfrac{1}{2}\Leftrightarrow A=\dfrac{19}{2\left(2-\dfrac{1}{2}\right)}=\dfrac{19}{2\cdot\dfrac{3}{2}}=\dfrac{19}{3}\)