\(A = {x {} \over 2x-2}\)+\({x^2+1 {} \over...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

Ghi hẳn hoi đi

17 tháng 8 2019

What ?? Đề bài j kì z bn ??

14 tháng 3 2019

Pt đã cho \(\Leftrightarrow3x+10x+8+2x+20x+48=9x+6x-36\Leftrightarrow35x+56=15x-36\Leftrightarrow20x=-92\)

\(\Rightarrow x=\frac{-23}{5}\)

7 tháng 2 2020

a, 8/x-8 + 11/x-11 = 9/x-9  + 10/ x-10

b, x/x-3 - x/x-5 = x/x-4 - x/x-6

c, 4/x^2-3x+2  - 3/2x^2-6x+1   +1 = 0

d, 1/x-1 + 2/ x-2  + 3/x-3  = 6/x-6

e, 2/2x+1 - 3/2x-1 = 4/4x^2-1

f, 2x/x+1 + 18/x^2+2x-3 = 2x-5 /x+3

g, 1/x-1 + 2x^2 -5/x^3 -1  = 4/ x^2 +x+1

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

1)

ĐK: \(x,y\neq 0\); \(x+y\neq 0\)

\(\frac{x^2-y^2}{6x^2y^2}: \frac{x+y}{12xy}\)

\(=\frac{x^2-y^2}{6x^2y^2}. \frac{12xy}{x+y}=\frac{(x-y)(x+y).12xy}{6x^2y^2(x+y)}=\frac{2(x-y)}{xy}\)

2) ĐK: \(x\neq \frac{\pm 1}{2}; 0; 1\)

\(\frac{5x}{2x+1}: \frac{3x(x-1)}{4x^2-1}=\frac{5x}{2x+1}.\frac{4x^2-1}{3x(x-1)}\)

\(=\frac{5x(2x-1)(2x+1)}{(2x+1).3x(x-1)}=\frac{5(2x-1)}{3(x-1)}\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

3) ĐK: \(x\neq \frac{\pm 1}{2}; 0\)

\(\left(\frac{2x-1}{2x+1}-\frac{2x-1}{2x+1}\right): \frac{4x}{10x-5}=0: \frac{4x}{10x-5}=0\)

4) ĐK: \(x\neq \frac{\pm 1}{3}\)

\(\frac{2}{9x^2+6x+1}-\frac{3x}{9x^2-1}=\frac{2}{(3x+1)^2}-\frac{3x}{(3x-1)(3x+1)}\)

\(=\frac{2(3x-1)}{(3x+1)^2(3x-1)}-\frac{3x(3x+1)}{(3x-1)(3x+1)^2}\)

\(=\frac{6x-2-9x^2-3x}{(3x+1)^2(3x-1)}=\frac{-9x^2+3x-2}{(3x-1)(3x+1)^2}\)

5) ĐK: \(x\neq \pm 1; \frac{-7\pm \sqrt{89}}{4}\)

\(\left(\frac{5}{x^2+2x+1}+\frac{2x}{x^2-1}\right): \frac{2x^2+7x-5}{3x-3}\)

\(=\left(\frac{5}{(x+1)^2}+\frac{2x}{(x-1)(x+1)}\right). \frac{3(x-1)}{2x^2+7x-5}\)

\(=\frac{5(x-1)+2x(x+1)}{(x-1)(x+1)^2}. \frac{3(x-1)}{2x^2+7x-5}=\frac{2x^2+7x-5}{(x+1)^2(x-1)}.\frac{3(x-1)}{2x^2+7x-5}\)

\(=\frac{3}{(x+1)^2}\)

12 tháng 12 2019

\(1.\)

\(a.=3\left(x+2\right)\)

\(b.=4\left(x-y\right)+x\left(x-y\right)\)

\(=\left(4+x\right)\left(x-y\right)\)

\(c.=\left(x-6\right)\left(x+6\right)\)

\(d.=\left(x^2-2y^2\right)\left(x^2+2y^2\right)\)

\(2.\)

\(a.ĐKXĐ:\)\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)

\(b.A=\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{3}{x+1}với\)\(x\ne\pm1\)

\(c.A=-1\Leftrightarrow\frac{3}{x+1}=-1\)

\(\Rightarrow\left(x+1\right).-1=3\)

\(-x-1=3\)

\(-x=4\)

\(\Rightarrow x=4\left(t/mđk\right)\)

\(d.\)Để \(x\in Z,A\in Z\Leftrightarrow x+1\inƯ\left(3\right)\)

\(Ư\left(3\right)\in\left\{\pm1,\pm3\right\}\)

x+11-13-3
x0-22-4

Vậy \(x\in\left\{0,-2,2,-4\right\}\)

1a) 3x + 6 = 3 (x + 2)

b) 4x - 4y + x2 - xy = (4x - 4y) + (x2 - xy) = 4 (x - y) + x (x - y) = (4 + x) (x - y)

c) x2 - 36 = x2 - 62 = (x + 6) (x - 6)

2a) phân thức A được xác định khi  \(x^2-1\ne0\)

                                                \(\Leftrightarrow\left(x+1\right)\left(x-1\right)\ne0\)

                                                \(\Rightarrow x+1\ne0..và..x-1\ne0\)

                                                 \(x\ne-1..và..x\ne1\)

b) \(A=\frac{3x-3}{x^2-1}=\frac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{3}{x+1}\)

c) \(A=-1\Rightarrow\frac{3}{x+1}=-1\)

                      \(\Rightarrow x+1=-3\)

                           \(x=-4\left(TM\text{Đ}K\right)\)

Vậy x = -1 thì A = -1

#Học tốt!!!

~NTTH~

8 tháng 11 2018

Bài 2

\(a,x^3+2x^2+x\)

\(=x.\left(x^2+2x+1\right)\)

\(b,xy+y^2-x-y\)

\(=y.\left(x+y\right)-\left(x+y\right)\)

\(=\left(y-1\right).\left(x+y\right)\)

bài 3

\(a,3x.\left(x^2-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x=0\\x^2=4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=2,x=-2\end{cases}}\)

vậy x=0,x=2 hay x=-2

\(b,xy+y^2-x-y=0\)

\(y.\left(x+y\right)-\left(x+y\right)=0\)

\(\left(y-1\right).\left(x+y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y-1=0\\x+y=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=-1\end{cases}}}\)

vậy x=-1, y=1