Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\)
b) \(\left(\frac{1+a+\sqrt{a}}{\sqrt{a}+1}\right).\left(\frac{1-a-\sqrt{a}}{\sqrt{a}-1}\right)\)
thế này à
a) \(\left(\sqrt{28}-5\sqrt{35}+7\sqrt{112}\right)2\sqrt{7}=2\sqrt{196}-10\sqrt{245}+14\sqrt{784}\)
\(=28-10\sqrt{49.5}+392=420-70\sqrt{5}\)
b) \(\left(\sqrt{72}-3\sqrt{24}+5\sqrt{8}\right)\sqrt{2}+4\sqrt{27}=\sqrt{144}-3\sqrt{48}+5\sqrt{16}+4\sqrt{9.3}\)
\(=12-3\sqrt{16.3}+20+12\sqrt{3}=32-12\sqrt{3}+12\sqrt{3}=32\)
a: \(\sqrt{\dfrac{3}{2}a^2}=\left|a\right|\cdot\dfrac{\sqrt{6}}{2}\)
b: \(\sqrt{\dfrac{1}{600}}=\dfrac{1}{10\sqrt{6}}=\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}=\sqrt{\dfrac{6}{100}}=\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}=\sqrt{\dfrac{10}{196}}=\dfrac{1}{14}\cdot\sqrt{10}\)
c: \(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{\sqrt{3}-1}{3\sqrt{3}}=\dfrac{3-\sqrt{3}}{9}\)
d: căn 2/3=căn 6/9=1/3*căn 6
e: \(\sqrt{\dfrac{x^2}{5}}=\sqrt{\dfrac{5x^2}{25}}=\pm\dfrac{x\sqrt{5}}{5}\)
f: \(\sqrt{\dfrac{3}{x}}=\sqrt{\dfrac{3x}{x^2}}=\dfrac{\sqrt{3x}}{\left|x\right|}\)
a) \(\sqrt{2x-3}=x-3\) (ĐK: \(x\ge\dfrac{3}{2}\))
<=> \(\left\{{}\begin{matrix}x\ge3\\2x-3=\left(x-3\right)^2\left(1\right)\end{matrix}\right.\)
(1) <=> \(2x-3=x^2-6x+9\)
<=> \(x^2-8x+12=0\)
<=> (x-2)(x-6) = 0 <=> \(\left[{}\begin{matrix}x=2\left(l\right)\\x=6\left(c\right)\end{matrix}\right.\)
KL: Phương trình có nghiệm duy nhất x = 6
b) \(\sqrt{10-x}+\sqrt{x+3}=5\) (ĐK: \(-3\le x\le10\))
<=> \(\left(\sqrt{10-x}+\sqrt{x+3}\right)^2=25\)
<=> \(10-x+x+3+2\sqrt{\left(10-x\right)\left(x+3\right)}=25\)
<=> \(\sqrt{\left(10-x\right)\left(x+3\right)}=6\)
<=> (10-x)(x+3) = 36
<=> 7x - x2 + 30 = 36
<=> x2 -7x + 6 = 0
<=> (x-1)(x-6) = 0
<=> \(\left[{}\begin{matrix}x=1\left(c\right)\\x=6\left(c\right)\end{matrix}\right.\)
KL: Phương trình có nghiệm S = {1;6}
c) \(\sqrt{x+3}-\sqrt{x-4}=1\) (ĐK: \(x\ge4\))
<=> \(\sqrt{x+3}=\sqrt{x-4}+1\)
<=> \(x+3=x-4+1+2\sqrt{x-4}\)
<=> \(\sqrt{x-4}=3\)
<=> x-4 = 9 <=> x = 13 (c)
KL: Phương trình có nghiệm duy nhất x = 13
a) ĐK: `x≥3`
`\sqrt(2x-3)=x-3`
`<=>2x-3=(x-3)^2`
`<=>2x-3=x^2-6x+9`
`<=>x^2-8x+12=0`
`<=>` \(\left[{}\begin{matrix}x=6\left(TM\right)\\x=2\left(L\right)\end{matrix}\right.\)
Vậy `x=2`.
b) ĐK: `-3<=x<=10`
`\sqrt(10-x)+\sqrt(x-3)=5`
`<=>10-x+x-3+2\sqrt((10-x)(x-3))=25`
`<=>2\sqrt((10-x)(x-3))=18`
`<=>\sqrt((10-x)(x-3))=9`
`<=>(10-x)(x-3)=81`
`<=>-x^2+13x-30=81`
`<=>x^2-13x+111=0` (VN)
a) \(\sqrt{28+10\sqrt{3}}=\sqrt{\left(5+\sqrt{3}\right)^2}=\left|5+\sqrt{3}\right|=5+\sqrt{3}\)
b) \(\sqrt{7+3\sqrt{5}}=\sqrt{\left(\dfrac{3\sqrt{2}}{2}+\dfrac{\sqrt{10}}{2}\right)^2}=\dfrac{3\sqrt{2}}{2}+\dfrac{\sqrt{10}}{2}\)
Bài 1 : \(A=2^{2001}+2^{2002}+2^{2003}+2^{2004}+2^{2005}+2^{2006}\)
\(=2^{2001}\left(1+2+2^2+2^3+2^4+2^5\right)\)
Ta có :
\(2^1\equiv2mod\left(10\right)\)
\(2^{10}\equiv4mod\left(10\right)\)
\(2^{100}\equiv4^{10}\equiv6mod\left(10\right)\)
\(2^{1000}\equiv6^{10}\equiv6mod\left(10\right)\)
\(2^{2000}\equiv6^2\equiv6mod\left(10\right)\)
\(\Rightarrow2^{2001}\equiv6.2\equiv2mod\left(10\right)\)
Mà : \(1+2+2^2+2^3+2^4+2^5\equiv3mod\left(10\right)\)
Vậy chữ số tận cùng của A là \(2\times3=6\)
Bài 2 : Đặt \(A=\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+2002\)
\(=\left(x-1\right)\left(x-8\right)\left(x-4\right)\left(x-5\right)+2002\)
\(=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2002\)
\(=\left(x^2-9x+14-6\right)\left(x^2-9x+14+6\right)+2002\)
\(=\left(x^2-9x+14\right)^2+1966\)
Vì \(\left(x^2-9x+14\right)^2\ge0\)
\(\Rightarrow\left(x^2-9x+14\right)^2+1966\ge1966\)
Vậy GTNN của A là 1966 .
Dấu bằng xảy ra khi \(x^2-9x+14=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=7\end{matrix}\right.\)