Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+c^2=b^2+d^2\)
\(\Leftrightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)⋮2\)
Ta có
\(a^2+b^2+c^2+d^2+\left(a+b+c+d\right)=\)
\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)
Ta thấy
\(a\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của 2 số TN liên tiếp nên chúng chia hết cho 2
\(\Rightarrow a^2+b^2+c^2+d^2+\left(a+b+c+d\right)⋮2\)
Mà \(a^2+b^2+c^2+d^2⋮2\left(cmt\right)\)
\(\Rightarrow a+b+c+d⋮2\)
Mà a+b+c+d là các số TN khác 0 => a+b+c+d>2
=> a+b+c+d là hợp số
A = [(a +b) + (c + d)].[(a + b) + (c + d)]
A = (a + b).(a + b) + (a +b).(c + d) + (c + d).(a + b) + (c+d).(c+d)
A = a2 + ab + ab + b2 + 2.(a+b).(c+d) + c2 + cd + cd + d2
A = a2 + b2 + c2 + d2 + 2ab + 2.(a +b).(c + d) + 2cd
A = a2 + b2 + a2 + b2 + 2. [ab + (a + b).(c + d) + cd]
A = 2.(a2 + b2) + 2.[ab + (a + b)(c + d) + cd]
⇒ A ⋮ 2 ⇒ a + b + c + d ⋮ 2 mà a; b;c;d là số tự nhiên nên a + b + c + d > 2
Hay A ⋮ 1; 2; A vậy A là hợp số (đpcm)
Để chứng minh rằng không tồn tại các số tự nhiên a, b, c, d thỏa mãn adcb = 12345 và a^2 = b^2 + c^2 + d^2, ta có thể sử dụng phương pháp phản chứng (proof by contradiction). Giả sử rằng tồn tại các số tự nhiên a, b, c, d thỏa mãn hai điều kiện trên. Từ a^2 = b^2 + c^2 + d^2, ta có thể suy ra rằng a^2 là một số chẵn (vì tổng của các số bình phương là số chẵn). Do đó, a cũng phải là một số chẵn. Tuy nhiên, khi nhân các số a, b, c, d lại với nhau theo thứ tự adcb, ta có một số lẻ (12345). Điều này chỉ có thể xảy ra khi ít nhất một trong các số a, b, c, d là số lẻ. Nhưng theo giả thiết, a là số chẵn. Điều này dẫn đến mâu thuẫn với giả thiết ban đầu, khiến cho giả thiết không thể đúng. Vì vậy, không tồn tại các số tự nhiên a, b, c, d thỏa mãn adcb = 12345 và a^2 = b^2 + c^2 + d^2.
Ta có: \(1^2+3^2+5^2+...+2021^2\) tổng trên có \(\left(2021-1\right)\div2+1=1011\)số hạng
do đó \(1^2+3^2+5^2+...+2021^2\)là số lẻ nên \(a+b+c=1^2+2^2+3^2+...+2021^2\)là số lẻ.
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)
\(\left(a+b+c\right)^2\)là số lẻ, \(2\left(ab+bc+ca\right)\)là số chẵn
nên \(a^2+b^2+c^2\)là số lẻ.
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.