K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

Bn thuyên kkks

`K(x)=F(x)+G(x)`

`K(x)=(3x^2+2x-5)+(-3x^2-2x+2)`

`= 3x^2+2x-5-3x^2-2x+2`

`= (3x^2-3x^2)+(2x-2x)+(-5+2)`

`= -3`

Bậc của đa thức: `0`

`@` `\text {dnammv}`

15 tháng 8 2018

Bài 1:

                                         Giải

Vì x và y là hai đại lượng tỉ lệ thuận nên: \(y=kx\left(k\ne0\right)\)

\(x_1,x_2\)là hai giá trị của x

\(y_1,y_2\)là hai giá trị tương ứng của y

nên: \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=k\)

Áp dụng tính chất dãy các tỉ số bằng nhau \(\Rightarrow k=\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{x_1+x_{ }_2}{y_1+y_2}=\frac{6}{12}=\frac{1}{2}\)

Vậy  \(k=\frac{1}{2}\).

Bài 2:

                                            Giải

Gọi độ dài ba cạnh của tam giác đó là a,b,c \(\left(a,b,c>0;a:b:c=2:3:4\right)\) với ba chiều cao tương ứng là x,y,z.

Gọi diện tích tam giác có ba cạnh tỉ lệ với 2,3,4 là S \(\Rightarrow a=\frac{2S}{x};b=\frac{2S}{y};c=\frac{2S}{z}\)

Theo đầu bài, ta có: \(a:b:c=2:3:4\)

\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)

\(\Rightarrow\)\(\frac{2S}{2x}=\frac{2S}{3y}=\frac{2S}{4z}\)

\(\Rightarrow\)\(2x=3y=4z\)

\(\Rightarrow\)\(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)\(\Rightarrow\)\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)hay \(x:y:z=6:4:3\)

Vậy ba chiều cao tương ứng với ba cạnh của tam giác tỉ lệ với 2,3,4 tỉ lệ với 6,4,3.