Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$M=\frac{2(\sqrt{x}-3)+7}{\sqrt{x}-3}=2+\frac{7}{\sqrt{x}-3}$
Để $M$ nguyên thì $\frac{7}{\sqrt{x}-3}$
Với $x$ nguyên không âm thì điều này xảy ra khi mà $\sqrt{x}-3$ là ước của $7$
$\Rightarrow \sqrt{x}-3\in\left\{\pm 1; \pm 7\right\}$
$\Rightarrow \sqrt{x}\in \left\{4; 2; 10; -4\right\}$
Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}\in \left\{4; 2; 10\right\}$
$\Rightarrow x\in \left\{16; 4; 100\right\}$ (tm)
Ta có
x2-x-2=x(x-1)-2
Vì x thuộc Z nên x(x-1) là số chẵn
Ta có x(x-1) \(⋮2\)
\(2⋮2\)
=> M(x) luôn là 1 số chẵn
=> M(x) không thể là số nguyên tố
Chú ý rằng ko có trường hợp x2-x-2=2
Khi đó x(x-1)=4, ko có x nào thỏa mãn
a: Khi x=-2 thì \(M=3-\left(-2-1\right)^2=3-9=-6\)
Khi x=0 thì \(M=3-\left(0-1\right)^2=2\)
Khi x=3 thì \(M=3-\left(3-1\right)^2=3-2^2=-1\)
b: Để M=6 thì \(3-\left(x-1\right)^2=6\)
\(\Leftrightarrow\left(x-1\right)^2=-3\)(loại)
c: \(M=-\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi x=1
a, Thay x=-2 vào M ta có:
\(M=3-\left(-2-1\right)^2=3-\left(-3\right)^2=3-9=-6\)
Thay x=0 vào M ta có:
\(M=3-\left(0-1\right)^2=3-\left(-1\right)^2=3-1=2\)
Thay x=3 vào M ta có:
\(M=3-\left(3-1\right)^2=3-2^2=3-4=-1\)
b, Để M=6 thì:
\(3-\left(x-1\right)^2=6\\ \Leftrightarrow\left(x-1\right)^2=-3\left(vô.lí\right)\)
c, Ta có: \(\left(x-1\right)^2\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
\(\Rightarrow M=3-\left(x-1\right)^2\le3\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
Vậy \(M_{max}=3\Leftrightarrow x=1\)
a: \(M=A+B=x^3-2x^2+1+2x^2-1=x^3\)
b: Thay x=1/2 vào M, ta được: \(M=\left(\dfrac{1}{2}\right)^3=\dfrac{1}{8}\)
c: Để M=0 thì x3=0
hay x=0
a: \(M\left(x\right)=\left(x-2\right)\left(x+1\right)\)
\(M\left(1\right)=\left(1-2\right)\cdot\left(1+1\right)=-2\)
\(M\left(-\dfrac{1}{2}\right)=\dfrac{-5}{2}\cdot\dfrac{1}{2}=-\dfrac{5}{4}\)
\(M\left(1.2\right)=\left(1.2-2\right)\cdot\left(1.2+1\right)=2.2\cdot\left(-0.8\right)=-1.76\)
b: Để M(x)=-2 thì \(x^2-x=0\)
=>x=0 hoặc x=1