K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
4 tháng 12 2021

a) \(M=1+3+3^2+3^3+...+3^{119}\)

\(3M=3+3^2+3^3+3^4+...+3^{119}+3^{120}\)

\(3M-M=\left(3+3^2+3^3+...+3^{120}\right)-\left(1+3+3^2+...+3^{119}\right)\)

\(2M=3^{120}-1\)

\(M=\frac{3^{120}-1}{2}\)

b) \(M=1+3+3^2+3^3+...+3^{118}+3^{119}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{117}\right)\)chia hết cho \(13\).

\(M=1+3+3^2+3^3+...+3^{118}+3^{119}\)

\(=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)

\(=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)

\(=40\left(1+3^4+...+3^{116}\right)\)chia hết cho \(5\).

12 tháng 5 2022

cảm ơn cô ạ

31 tháng 12 2018

a/ \(M=1+3+3^2+.....+3^{119}\)

\(\Leftrightarrow3M=3+3^2+.....+3^{119}+3^{120}\)

\(\Leftrightarrow3M-M=\left(3+3^2+.....+3^{120}\right)-\left(1+3+....+3^{119}\right)\)

\(\Leftrightarrow2M=3^{120}-1\)

\(\Leftrightarrow M=\dfrac{3^{120}-1}{2}\)

b/ \(M=1+3+3^2+..........+3^{119}\)

\(=\left(1+3+3^2\right)+........+\left(3^{117}+3^{118}+3^{119}\right)\)

\(=1\left(1+3+3^2\right)+........+3^{117}\left(1+3+3^2\right)\)

\(=1.13+.....+3^{117}.13\)

\(=13\left(1+.....+3^{117}\right)⋮13\Leftrightarrow M⋮13\left(đpcm\right)\)

31 tháng 12 2018

còn chia hết cho 5 không nữa mà bạn

7 tháng 5 2016

1. Ta có:

3A = 3^2 + 3^3+3^4+...+3^101

=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)

<=> 2A= 3^101-3

=> 2A +3 = 3^101

Mà 2A+3=3^n

=> 3^101 = 3^n => n=101

7 tháng 5 2016

2. M=3+32+33+34+...+3100

=>3M=32+33+34+35+...+3101

=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé) 

=>   M=\(\frac{3^{101}-3}{2}\)

a) Ta co : 3101=(34)25 .3=8125.3

Bạn học đồng dư thức rồi thì xem:

  Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)

=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8

=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)

Ma M=3101-3 chia hết cho 3                              (2)

Từ (1) và (2) => M chia hết cho 12

b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)

=> 3101-3 +3 =3n

=> 3101=3n=> n = 101

     

                                   

10 tháng 2 2016

ủng hộ mình lên 110 với các bạn

14 tháng 9 2023

Ta có: ( Sửa đề )

\(A=4+4^2+4^3+...+4^{2021}+4^{2022}\)

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2021}+4^{2022}\right)\)

\(A=20+4^2.\left(4+4^2\right)+...+4^{2020}.\left(4+4^2\right)\)

\(A=20+4^2.20+...+4^{2020}.20\)

\(A=20.\left(1+4^2+...+4^{2020}\right)\)

Vì \(20⋮20\) nên \(20.\left(1+4^2+...+4^{2020}\right)\)

Vậy \(A⋮20\)

\(#WendyDang\)

 

21 tháng 10 2023

(Mình chỉ làm đc bài 1 thôi nhé)
Bài 1:
A = 1 + 2 + 3 + 4 +...+999
2A= (1+999)+(2+998)+(3+997)+...+(999+1)
Ta nhận thấy các kết quả của các tổng trong ngoặc trên đều bằng 1000 (số chẵn), mà các số chia hết cho 2 là số chẵn, suy ra A chia hết cho 2

22 tháng 10 2023

Cảm ơn nhee

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)