Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\ne2y,x\ne-y;x\ne-1\)
b) \(B=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
\(B=\left[\dfrac{y-x}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{4x^4+4x^2y+y^2-4}{x\left(x+y\right)+\left(x+y\right)}\)
\(B=\left[\dfrac{\left(y-x\right)\left(x+y\right)}{\left(x-2y\right)\left(x+y\right)}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x+y\right)\left(x-2y\right)}:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{-2x^2-y+2}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(2x^2+y-2\right)}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(2x^2+y+2\right)}\)
\(=\left[\left(\dfrac{-\left(x-y\right)}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}\right):\dfrac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}\right]:\dfrac{x+1}{2x^2+y+2}\)
\(=\dfrac{-x^2+y^2-x^2-y^2-y+2}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y-2\right)\left(2x^2+y+2\right)}\cdot\dfrac{2x^2+y+2}{x+1}\)
\(=\dfrac{-2x^2-y+2}{\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)}{\left(2x^2+y-2\right)\left(2x^2+y+2\right)}\cdot\dfrac{2x^2+y+2}{x+1}\)
\(=\dfrac{-1}{x-2y}\)
Thay $x=-1,76$ và $y=\dfrac{3}{25}$ vào $P=\dfrac{-1}{x-2y}$, ta được:
$P=\dfrac{-1}{-1,76-2.(\dfrac{3}{25})}=\dfrac{1}{2}$.
\(a,\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}:\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=\left(\frac{x}{y\left(x-y\right)}+\frac{y-2x}{x\left(x-y\right)}\right):\left(\frac{y}{xy}+\frac{x}{xy}\right)\)
\(=\left(\frac{x-y}{x\left(x-y\right)}\right):\left(\frac{x+y}{xy}\right)\)
\(=\frac{1}{x}.\frac{xy}{x+y}=\frac{y}{x+y}\)
f: \(=\dfrac{5x-3-x+3}{4x^2y}=\dfrac{4x}{4x^2y}=\dfrac{1}{xy}\)
g: \(=\dfrac{3x+10-x-4}{x+3}=\dfrac{2x+6}{x+3}=2\)
h: \(=\dfrac{4-2+x}{x-1}=\dfrac{x+2}{x-1}\)
n: \(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{x\left(x+3\right)}=\dfrac{2}{x}\)
p: \(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)
k: \(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{x^2-4}\)
m: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
a: \(B=\left(x^2+y\right)\left(y+\dfrac{1}{4}\right)+x^2y^2+\dfrac{3}{4}\left(y+\dfrac{1}{3}\right)\)
\(=x^2y+\dfrac{1}{4}x^2+y^2+\dfrac{1}{4}y+x^2y^2+\dfrac{3}{4}y+\dfrac{1}{4}\)
\(=x^2y+x^2y^2+y^2+y+\dfrac{1}{4}x^2+\dfrac{1}{4}\)
\(=y\left(x^2+1\right)+y^2\left(x^2+1\right)+\dfrac{1}{4}\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(y+\dfrac{1}{2}\right)^2\)
\(C=x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\)
\(=x^2y^2+1+x^2-x^2y-y+y^2\)
\(=x^2y^2-y+x^2+y^2-x^2y+1\)
\(=y^2\left(x^2+1\right)-y\left(x^2+1\right)+x^2+1\)
\(=\left(x^2+1\right)\left(y^2-y+1\right)\)
=>\(A=\dfrac{y^2+y+\dfrac{1}{4}}{y^2-y+1}\)
b: \(=\dfrac{y^2-y+1+2y-\dfrac{3}{4}}{y^2-y+1}=1+\dfrac{2y-\dfrac{3}{4}}{y^2-y+1}>=1\)
Dấu = xảy ra khi y=3/8
a )
ĐKXĐ : \(y\ne0\) , \(y\ne-1\)
\(P=\left(\dfrac{2y^2+1}{y^3+1}-\dfrac{y}{y+y^2}\right):\left(1-\dfrac{y^2-2y-1}{y^2-y+1}\right)\)
\(=\left(\dfrac{2y^2+1}{\left(y+1\right)\left(y^2-y+1\right)}-\dfrac{1}{y+1}\right):\left(\dfrac{y^2-y+1-y^2+2y+1}{y^2-y+1}\right)\)
\(=\dfrac{2y^2+1-y^2+y-1}{\left(y+1\right)\left(y^2-y+1\right)}:\dfrac{y+2}{y^2-y+1}\)
\(=\dfrac{y\left(y+1\right)}{\left(y+1\right)\left(y^2-y+1\right)}\times\dfrac{y^2-y+1}{y+2}\)
\(=\dfrac{y}{y+2}\)
Câu b :
\(\left|2y+5\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2y+5=3\\-2y-5=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)
Thay \(y=-1\) vào P ta được : \(P=\dfrac{-1}{-1+2}=-1\)
Thay \(y=-4\) vào P ta được : \(P=\dfrac{-4}{-4+2}=2\)
Câu c :
T chỉ biết lập luận thôi :
Để P chia hết cho 4 thì \(\dfrac{y}{y+2}\) chia hết cho 4 hay \(\dfrac{y}{y+2}\) phải là bội của 4.
Do \(y< y+2\) nên \(\dfrac{y}{y+2}\) không thể là các số 4 ; 8 ;12 ;.........
Nên \(\dfrac{y}{y+2}=0\) thì sẽ chia hết cho 4 . \(\Leftrightarrow y=0\) ( Loại )
Nên không có giá trị y nào hết .
Câu d :
\(P=3-m>2\)
\(\Leftrightarrow-m>-1\)
\(\Leftrightarrow m< 1\)
a: \(P=\left(\dfrac{2y^2+1}{\left(y+1\right)\left(y^2-y+1\right)}-\dfrac{1}{y+1}\right):\dfrac{y^2-y+1-y^2+2y+1}{y^2-y+1}\)
\(=\dfrac{2y^2+1-y^2+y-1}{\left(y+1\right)\left(y^2-y+1\right)}\cdot\dfrac{y^2-y+1}{y+2}\)
\(=\dfrac{y^2+y}{\left(y+1\right)}\cdot\dfrac{1}{y+2}=\dfrac{y}{y+2}\)
b: |2y+5|=3
=>2y+5=3 hoặc 2y+5=-3
=>2y=-2 hoặc 2y=-8
=>y=-1(loại) hoặc y=-4(nhận)
Thay y=-4 vào P,ta được:
\(P=\dfrac{-4}{-4+2}=\dfrac{-4}{-2}=2\)
c: Để P chia hết cho 4 thì P=4k
=>y=4k(y+2)
a: \(M=\dfrac{-y+4}{y-2}+\dfrac{1}{y-2}+\dfrac{3}{y+2}\)
\(=\dfrac{-y+5}{y-2}+\dfrac{3}{y+2}=\dfrac{-y^2-2y+5y+10+3y-6}{\left(y-2\right)\left(y+2\right)}\)
\(=\dfrac{-y^2+6y+4}{\left(y-2\right)\left(y+2\right)}\)
b: Khi y=3 thì \(M=\dfrac{-3^2+6\cdot3+4}{\left(3-2\right)\left(3+2\right)}=\dfrac{-5+18}{5}=\dfrac{13}{5}\)