Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2x\sqrt{x^2-1}}\\ A=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\\ A=\left|\sqrt{x^2-1}+1\right|-\left|\sqrt{x^2-1}-1\right|\)
\(a,\) A có nghĩa \(\Leftrightarrow x^2-1\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
\(b,x\ge\sqrt{2}\Leftrightarrow\sqrt{x^2-1}-1\ge\sqrt{\left(\sqrt{2}\right)^2-1}-1=0\\ \Rightarrow A=\sqrt{x^2-1}+1-\left(\sqrt{x^2-1}-1\right)=2\)
a: \(=x\sqrt{2}-\sqrt{\left(x\sqrt{2}+1\right)^2}=x\sqrt{2}-\left|x\sqrt{2}+1\right|\)
b: Khi A=-3 thì \(\left|x\sqrt{2}+1\right|=x\sqrt{2}+3\)
\(\Leftrightarrow x\sqrt{2}+1=-x\sqrt{2}-3\)
\(\Leftrightarrow2x\sqrt{2}=-4\)
hay \(x=-\sqrt{2}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(A=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+\sqrt{x}\)
\(=2\sqrt{x}-1\)
a: \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\sqrt{x}-1\)
a) \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
Đk: \(x>0\) và \(x\ne1\)
\(\Rightarrow A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-2x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
b) Thay \(x=3+2\sqrt{2}\) vào A ta được:
\(A=\sqrt{3+2\sqrt{2}}-1=\sqrt{\left(\sqrt{2}+1\right)^2}-1\)
\(=\sqrt{2}+1-1=\sqrt{2}\)
(Vì \(\sqrt{2}+1>0\Rightarrow\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\))
a) \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\left(x>0;x\ne1\right)\)
\(=\dfrac{x\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-2x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)
\(=\sqrt{x}-1\)
\(---\)
b) Thay \(x=3+2\sqrt{2}\) vào \(A\), ta được:
\(A=\sqrt{3+2\sqrt{2}}-1\)
\(=\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}-1\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}-1\)
\(=\left|\sqrt{2}+1\right|-1\)
\(=\sqrt{2}+1-1\)
\(=\sqrt{2}\)
\(Toru\)
\(a,A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\left(dk:x>0,x\ne1\right)\\ =\dfrac{x}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\\ =\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\\ =\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\\ =\sqrt{x}-1\)
\(b,x=3+2\sqrt{2}=\sqrt{2}^2+2\sqrt{2}.1+1=\left(\sqrt{2}+1\right)^2\)
\(A=\sqrt{x}-1=\sqrt{\left(\sqrt{2}+1\right)}^2-1=\sqrt{2}+1-1=\sqrt{2}\)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
a)ĐK:\(\begin{cases}x^2-1\ge0\\x^2-2\sqrt{x^2-1}\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x^2\ge1\\x^2\ge2\sqrt{x^2-1}\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x^4\ge4\left(x^2-1\right)\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge1\\x^4-4x^2+4\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\\left(x^2-2\right)^2\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x^2-2\ge0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge1\\x^2\ge2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge\sqrt{2}\end{cases}\)\(\Leftrightarrow x\ge\sqrt{2}\)
b)Có \(A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)
\(=\sqrt{\left(x^2-1\right)+2\sqrt{x^2-1}+1}-\sqrt{\left(x^2-1\right)-2\sqrt{x^2-1}+1}\)
\(=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)
\(=\sqrt{x^2-1}+1-\left|\sqrt{x^2-1}-1\right|\)
Vói \(x\ge1\) thì A=\(\sqrt{x^2-1}+1-\left(\sqrt{x^2-1}-1\right)=\sqrt{x^2-1}+1-\sqrt{x^2-1}+1=2\)
Với \(\sqrt{2}< x< 1\) thì
\(A=\sqrt{x^2-1}+1-\left(1-\sqrt{x^2-1}\right)=\sqrt{x^2-1}+1-1+\sqrt{x^2-1}=2\sqrt{x^2-1}\)