Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(\frac{1-x^3+1-x-x}{1-x}\right):\frac{-\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^2}=\left(\frac{-x^3-2x+2}{1-x}\right)\cdot\left(1-x\right)=-x^3-2x+2\)
b) \(-\left(-1\frac{2}{3}\right)-2\cdot\left(-1\frac{2}{3}\right)+2=\frac{5}{3}+\frac{10}{3}+2=7\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{8}{x^2-1}\right):\left(\frac{1}{x-1}-\frac{7x+3}{1-x^2}\right)\)
\(A=\left[\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x+1\right)\left(x-1\right)}+\frac{8}{\left(x+1\right)\left(x-1\right)}\right]:\left[\frac{x+1}{\left(x+1\right)\left(x-1\right)}-\frac{3-7x}{\left(x+1\right)\left(x-1\right)}\right]\)
\(A=\left[\frac{x^2+2x+1-x^2+2x-1+8}{\left(x+1\right)\left(x-1\right)}\right]:\frac{x+1-3+7x}{\left(x+1\right)\left(x-1\right)}\)
\(A=\frac{4x+8}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{8x-2}\)
......................
điều kiện dễ mà,mẫu phải khác 0=>điều kiện pài này là x khác 1
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)
\(A=\left(\frac{1-x^3}{1-x}-x\right):\frac{1-x^2}{1-x-x^2+x^3}\)
\(=\frac{\left(1-x\right)\left(1+x+x^2\right)-x+x^2}{1-x}.\frac{\left(1-x\right)-x^2\left(1-x\right)}{\left(1-x\right)\left(1+x\right)}\)
\(=\frac{\left(1-x\right)\left(1+x+x^2\right)-x\left(1-x\right)}{1-x}.\frac{\left(1-x\right)\left(1-x^2\right)}{\left(1-x\right)\left(1+x\right)}\)
\(=\frac{\left(1-x\right)\left(1+x^2\right)}{1-x}.\frac{\left(1-x\right)\left(1-x\right)\left(1+x\right)}{\left(1-x\right)\left(1+x\right)}\)
\(=\left(1+x^2\right)\left(1-x\right)\)
\(=-x^3+x^2-x+1\)
Ta có : \(A=\left(\frac{1-x^3}{1-x}-x\right):\frac{1-x^2}{1-x-x^2+x^3}\)
\(=\left(\frac{\left(1-x\right)\left(1+x+x^2\right)}{\left(1-x\right)}-x\right):\frac{\left(1-x\right)\left(1+x\right)}{\left(1-x\right)-\left(x^2-x^3\right)}\)
\(=\left(\left(1+x+x^2\right)-x\right):\frac{\left(1-x\right)\left(1+x\right)}{\left(1-x\right)-x^2\left(x-1\right)}\)
\(=\left(1+x^2\right):\frac{\left(1-x\right)\left(1+x\right)}{\left(1-x\right)\left(1-x^2\right)}\)
\(=\left(1+x^2\right):\frac{\left(1-x\right)\left(1+x\right)}{\left(1-x\right)\left(1-x\right)\left(x+1\right)}\)
\(=\left(1+x^2\right):\frac{1}{1-x}\)
\(=\left(1+x^2\right)\left(1-x\right)\)