Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\)
\(\Rightarrow\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\left(đpcm\right)\)
ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{100}}\)
\(A=1-\frac{1}{2^{100}}< 1\)
\(\Rightarrow A< 1\left(đpcm\right)\)
A= \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+ \(\frac{1}{2^3}\)+...+ \(\frac{1}{2^{99}}\)+ \(\frac{1}{2^{100}}\).
2A= 1+ \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+...+ \(\frac{1}{2^{100}}\)+ \(\frac{1}{2^{101}}\).
2A- A=( 1+ \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+...+ \(\frac{1}{2^{100}}\)+ \(\frac{1}{2^{101}}\))-( \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+ \(\frac{1}{2^3}\)+...+ \(\frac{1}{2^{99}}\)+ \(\frac{1}{2^{100}}\)).
A= 1- \(\frac{1}{2^{100}}\)< 1.
=> A< 1.
Vậy A< 1.
Ta có
\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow2A=\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+\frac{2}{2^4}+...+\frac{2}{2^{100}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)
\(\Rightarrow A< 1\)
Vậy A<1 (đpcm)
Ta có:3.A=1+1/3+1/3^2+...+1/3^97 +1/3^98
=>3.A - A=(1+1/3+1/3^2+...+1/3^98 + 1/3^99)-(1/3+1/3^2 +1/3^3+...+1/3^98+1/3^99)
=>2.A=1-1/3^99
=>A=1/2 -1/3^99.1/2 <1/2
Vậy ... T I C K cho mình với nha
A = 1/2 + 1/22 + 1/23 + 1/24 + ... + 1/2100
2A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/299
2A - A = (1 + 1/2 + 1/22 + 1/23 + ... + 1/299) - (1/2 + 1/22 + 1/23 + 1/24 + ... + 1/2100)
A = 1 - 1/2100 < 1
Do 1 > 1/2100 => A > 0
=> 0 < A < 1
=> đpcm
\(A=\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{96^2}+\frac{1}{98^2}\)
\(A< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{95.97}+\frac{1}{97.99}\)
\(A< \frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}+\frac{1}{99}\)
\(A< 1-\frac{1}{99}\)
\(A< \frac{98}{99}\)
Ta có : \(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)
\(2A=2+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{2017}}\)
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)
\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{2}{2^{2016}}\right)\)
\(A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{2016}}-\frac{1}{2^{2017}}\)
\(A=2-\frac{1}{2^{2017}}=\frac{2^{2018}-1}{2^{2017}}\)
Vậy A < 1
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2016}}\)
\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2016}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)
\(A=2-\frac{1}{2^{2017}}\left(đpcm\right)\)