K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

câu a làm theo hằng đẳng thức 

câu b ta sẽ đc (b^2 +c^2 -a^2 -2bc )(b^2 +c^2 -a^2 +2bc ) = { (b-c)^2 -a^2 } {(b+c)^2-a^2}

theo bất đẳng thức trong tam giác thì hiệu 2 cạnh  luôn nhỏ hơn cạnh còn lại nên {(b-c)^2-a^2} <0 

mà {(b+c)^2-a^2} >0 \(\Rightarrow\)A<0 

k cho mk cái nha

a, \(A=\left(b^2+c^2-a^2\right)-4b^2c^2\)

\(\Rightarrow A=\left(b^2+c^2-a^2\right)-\left(2bc\right)^{^2}\)

\(\Rightarrow A=\left(b^2+c^2-a^2-2bc\right)\left(b^2+c^2-a^2+2bc\right)\)

\(\Rightarrow A=\left[\left(b-c\right)^2-a^2\right]\left[\left(b+c\right)^2-a^2\right]\)

\(\Rightarrow A=\left(c-b-a\right)\left(c-b+a\right)\left(c+b-a\right)\left(c+b+a\right)\)

b, Như bạn Trần Thị Nhung

10 tháng 6 2016

a) Áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(M=\left(b^2+c^2-a^2\right)^2-4b^2c^2=\left(b^2+c^2-2bc-a^2\right)\left(b^2+c^2+2bc-a^2\right)=\left[\left(b-c\right)^2-a^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)

b) Nếu a,b,c là độ dài các cạnh của tam giác thì ta có : \(\hept{\begin{cases}a+b>c>0\\b+c>a>0\\a+c>b>0\end{cases}\Leftrightarrow\hept{\begin{cases}b-c-a< 0\left(1\right)\\b-c+a>0\left(2\right)\\b+c-a>0\left(3\right)\end{cases}}}\)

Nhân (1) , (2) , (3) theo vế cùng với a+b+c>0 được M<0

c) Dễ thấy rằng : Trong phân tích M thành nhân tử, ta thấy có xuất hiện thừa số (a+b+c)

Mà a+b+c chia hết cho 6 nên suy ra M chia hết cho 6

30 tháng 10 2023

a: \(A=\left(b^2+c^2-a^2\right)^2-4b^2c^2\)

\(=\left(b^2+c^2-a^2\right)^2-\left(2bc\right)^2\)

\(=\left(b^2-2bc+c^2-a^2\right)\left(b^2+2bc+c^2-a^2\right)\)

\(=\left[\left(b+c\right)^2-a^2\right]\left[\left(b-c\right)^2-a^2\right]\)

\(=\left(b+c-a\right)\left(b+c+a\right)\left(b-c-a\right)\left(b-c+a\right)\)

b: a,b,c là độ dài 3 cạnh của 1 tam giác

=>b+c>a và a+b>c và a+c>b

=>b+c-a>0 và a+b-c>0 và a+c-b>0

=>b+c-a>0 và b-(c+a)<0 và a+b-c>0

=>(b+c-a)[b-(c+a)][a+b-c](a+b+c)<0

=>A<0

11 tháng 3 2018

Ta có

D   =   a ( b 2   +   c 2 )   –   b ( c 2   +   a 2 )   +   c ( a 2   +   b 2 )   –   2 a b c     =   a b 2   +   a c 2   –   b c 2   –   b a 2   +   c a 2   +   c b 2   –   2 a b c     =   ( a b 2   –   a 2 b )   +   ( a c 2   –   b c 2 )   +   ( a 2 c   –   2 a b c   +   b 2 c )     =   a b ( b   –   a )   +   c 2 ( a   –   b )   +   c ( a 2   –   2 a b   +   b 2 )     =   - a b ( a   –   b )   +   c 2 ( a   –   b )   +   c ( a   –   b ) 2     =   ( a   –   b ) ( - a b   +   c 2   +   c ( a   –   b ) )     =   ( a   –   b ) ( - a b   +   c 2   +   a c   –   b c )     =   ( a   –   b ) [ ( - a b   +   a c )   +   ( c 2   –   b c ) ]

= (a – b)[a(c – b) + c(c – b)]

= (a – b)(a + c)(c – b)

Với a = 99; b = -9; c = 1, ta có

D = (99 - (-9))(99 + 1) (1 - (-9)) = 108.100.10 = 108000

Đáp án cần chọn là: B

10 tháng 6 2021

mới ăn miếng cơm cà ngon nhức nách luôn ai thèm cơm cà không điểm danh nào

1: (a-1)(a-3)(a-4)(a-6)+9

=(a^2-7a+6)(a^2-7a+12)+9

=(a^2-7a)^2+18(a^2-7a)+81

=(a^2-7a+9)^2>=0

b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)

a^2-4a+1=0

=>a=2+căn 3 hoặc a=2-căn 3

=>A=11-4căn 3 hoặc a=11+4căn 3

21 tháng 3 2017

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Đề sai với $b=0,1; c=0,2; a=0,25$

NM
10 tháng 10 2021

ta có :

undefined

23 tháng 2 2018