Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức bunyakovsky: \(\left(b+c\right)^2\le2\left(b^2+c^2\right)\Leftrightarrow b+c\le\sqrt{2\left(b^2+c^2\right)}\)
tương tự với các cặp còn lại , ta thu được \(VT\ge\frac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\frac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\frac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)
Đặt \(\hept{\begin{cases}\sqrt{b^2+c^2}=x\\\sqrt{a^2+c^2}=y\\\sqrt{a^2+b^2}=z\end{cases}}\)(\(x,y,z\ge0\)và \(x+y+z=\sqrt{2011}\))\(\Leftrightarrow\hept{\begin{cases}a^2=\frac{y^2+z^2-x^2}{2}\\b^2=\frac{x^2+z^2-y^2}{2}\\c^2=\frac{x^2+y^2-z^2}{2}\end{cases}}\)
\(VT\ge\frac{y^2+z^2-x^2}{2\sqrt{2}x}+\frac{x^2+z^2-y^2}{2\sqrt{2}y}+\frac{x^2+y^2-z^2}{2\sqrt{2}z}\)
\(=\frac{1}{2\sqrt{2}}\left(\frac{y^2+z^2-x^2}{x}+\frac{z^2+x^2-y^2}{y}+\frac{x^2+y^2-z^2}{z}\right)=\frac{1}{2\sqrt{2}}\left(\frac{y^2}{x}+\frac{z^2}{x}+\frac{z^2}{y}+\frac{x^2}{y}+\frac{x^2}{z}+\frac{y^2}{z}-x-y-z\right)\)
ÁP dụng bất đẳng thức cauchy-schwarz:
\(\frac{y^2}{x}+\frac{z^2}{x}+\frac{x^2}{y}+\frac{z^2}{y}+\frac{y^2}{z}+\frac{x^2}{x}\ge\frac{\left(2x+2y+2z\right)^2}{2x+2y+2z}=2x+2y+2z\)
do đó \(VT\ge\frac{1}{2\sqrt{2}}\left(x+y+z\right)=\frac{1}{2}\sqrt{\frac{2011}{2}}\)( vì \(x+y+z=\sqrt{2011}\))
đẳng thức xảy ra khi \(x=y=z=\frac{\sqrt{2011}}{3}\)hay \(a=b=c=\frac{1}{3}\sqrt{\frac{2011}{2}}\)
ơ đang chờ mấy bạn top bxh vô trả lời mà hỏng thấy đou
hộ mình với:(
Dễ chứng minh được \(b+c\le\sqrt{2\left(b^2+c^2\right)}\) và tương tự....
Đặt \(\left(\sqrt{a^2+b^2};\sqrt{b^2+c^2};\sqrt{c^2+a^2}\right)\rightarrow\left(x;y;z\right)\) thì ta có:
\(\hept{\begin{cases}x,y,z\ge0\\x+y+z=3\sqrt{2}\\VT\ge\frac{1}{\sqrt{2}}\left(\frac{x^2+z^2-y^2}{2y}+\frac{x^2+y^2-z^2}{2z}+\frac{y^2+z^2-x^2}{2x}\right)\end{cases}}\)
Mà \(\frac{1}{\sqrt{2}}\left(\frac{x^2+z^2-y^2}{2y}+\frac{x^2+y^2-z^2}{2z}+\frac{y^2+z^2-x^2}{2x}\right)\)
\(=\frac{1}{\sqrt{2}}\left(\frac{x^2}{2y}+\frac{x^2}{2z}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}-\frac{x+y+z}{2}\right)\)
\(\ge\frac{1}{\sqrt{2}}\left(\frac{4\left(x+y+z\right)^2}{4\left(x+y+z\right)}-\frac{x+y+z}{2}\right)\)
\(=\frac{1}{\sqrt{2}}\left(\left(x+y+z\right)-\frac{x+y+z}{2}\right)=\frac{x+y+z}{2\sqrt{2}}=\frac{3\sqrt{2}}{2\sqrt{2}}=\frac{3}{2}\)
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
Ta có: Theo bất đẳng thức cauchy schwarz và bất đẳng thức cauchy với a;b;c>0 ta có:
\(\dfrac{1}{a^2}+\dfrac{1}{a^2}=\dfrac{\left(\sqrt{a}\right)^2}{a^3}+\dfrac{1}{a^2}\ge\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+a^2}\ge\dfrac{4\sqrt{a}}{a^3+a^2}\)(1)
Tương tự \(\dfrac{1}{b^2}+\dfrac{1}{b^2}\ge\dfrac{4\sqrt{b}}{b^3+b^2}\left(2\right);\dfrac{1}{c^2}+\dfrac{1}{c^2}\ge\dfrac{4\sqrt{c}}{c^3+c^2}\left(3\right)\)
Cộng từng vế (1) ;(2);(3) vế theo vế rồi chia hai vế cho 2 ta có đpcm