Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{a}{671b+c}=\frac{b}{671c+a}=\frac{c}{671a+b}=\frac{a+b+c}{\left(671b+c\right)+\left(671c+a\right)+\left(671a+b\right)}=\frac{a+b+c}{672.\left(a+b+c\right)}=\frac{1}{672}\)
\(\frac{a}{671b+c}=\frac{1}{672}\Rightarrow672a=671b+c\)
\(\frac{b}{671c+a}=\frac{1}{672}\Rightarrow672b=671c+a\)
\(\frac{c}{671a+b}=\frac{1}{672}\Rightarrow672c=671a+b\)
\(\Rightarrow A=\frac{671b+c}{a}+\frac{671c+a}{b}+\frac{671a+b}{c}\)
\(A=\frac{672a}{a}+\frac{672b}{b}=\frac{672c}{c}=671a+671b+671c=671\left(a+b+c\right)\)
\(\frac{x-18}{2018}+\frac{x-14}{1007}+\frac{x-13}{671}=-6\)
\(\Rightarrow\frac{x-18}{2018}+1+\frac{x-14}{1007}+2+\frac{x-13}{671}+3=-6+6\)
\(\Rightarrow\frac{x-2000}{2028}+\frac{x-2000}{1007}+\frac{x-2000}{671}=0\)
\(\Rightarrow\left(x-2000\right)\left(\frac{1}{2018}+\frac{1}{1007}+\frac{1}{671}\right)=0\)
Vì \(\frac{1}{2018}+\frac{1}{1007}+\frac{1}{671}\ne0\)
=> x - 2000 = 0
=> x = 2000
Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)
Áp dụng tc dtsbn:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)