Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất dãy tỉ số bằng nhau ta có : a+b-c/c = b+c-a/a = c+a-b/b = a+b-c+b+c-a+c+a-b/a+b+c = a+b+c/a+b+c = 1
Ta có : a+b-c/c=1 => a+b-c=c => a+b+c=3c (1)
Ta có : b+c-a/a=1 => b+c-a=a => a+b+c=3a (2)
Ta có : c+a-b/b=1 => c+a-b=b => a+b+c=3b (3)
Từ (1);(2);(3) => 3c=3a=3b => a=b=c => b/a=1 ; a/c=1 ; c/b=1
=> B= (1+b/a)(1+a/c)(1+c/b) = (1+1)(1+1)(1+1) = 2.2.2 = 8
Ta có:
(a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c-a+c+a-b)/(c+a+b)=0/(c+a+b)=0
=> a+b-c=0 =>a+b=c
b+c-a=0 =>b+c=a
c+a-b=0 =>c+a=b
=>B=(a+b)/a.(c+a)/c.(b+c)/b
=c/a.b/c.a/b=1
TK!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Ta có:
(a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c-a+c+a-b)/(c+a+b)=0/(c+a+b)=0
=> a+b-c=0 =>a+b=c
b+c-a=0 =>b+c=a
c+a-b=0 =>c+a=b
=>B=(a+b)/a.(c+a)/c.(b+c)/b
=c/a.b/c.a/b=1
xét a +b+c = 0 => a+b=-c; c+a=-b;b+c=-a
thay vào B ta sẽ đc B = -1
XÉT a+b+c khác 0
áp dụng tính chất của dãy tỉ số bằng nhau
=> a+b=2c;b+c=2a;a+c=2b
=>S = 8
Theo t/c dãy tỉ số=nhau:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}=\frac{a+b+c}{c+a+b}=1\)
=>a+b-c=c =>a+b=2c (1)
b+c-a=a=>b+c=2a (2)
c+a-b=b=>c+a=2b (3)
Thay (1);(2);(3) vào B ta có;
\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=\frac{2c.2b.2a}{a.c.b}=2.2.2=8\)
Vậy B=8
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{a}{671b+c}=\frac{b}{671c+a}=\frac{c}{671a+b}=\frac{a+b+c}{\left(671b+c\right)+\left(671c+a\right)+\left(671a+b\right)}=\frac{a+b+c}{672.\left(a+b+c\right)}=\frac{1}{672}\)
\(\frac{a}{671b+c}=\frac{1}{672}\Rightarrow672a=671b+c\)
\(\frac{b}{671c+a}=\frac{1}{672}\Rightarrow672b=671c+a\)
\(\frac{c}{671a+b}=\frac{1}{672}\Rightarrow672c=671a+b\)
\(\Rightarrow A=\frac{671b+c}{a}+\frac{671c+a}{b}+\frac{671a+b}{c}\)
\(A=\frac{672a}{a}+\frac{672b}{b}=\frac{672c}{c}=671a+671b+671c=671\left(a+b+c\right)\)