K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

Em mới lớp 7 nên chỉ biết giải bài 2 thôi

\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)

\(\Rightarrow\frac{a+b-c}{c}+2=\frac{a+c-b}{b}+2=\frac{c+b-a}{a}+2\)

\(=\frac{a+b}{c}-1+2=\frac{a+c}{b}-1+2=\frac{c+b}{a}-1+2\)

\(=\frac{a+b}{c}+1=\frac{a+c}{b}+1=\frac{c+b}{a}+1\)

\(=\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)

\(\Rightarrow a=b=c\) Thao vào P ta được :

\(P=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a.2a.2a}{a^3}=\frac{8a^3}{a^3}=8\)

4 tháng 2 2017

1

xét hiệu \(x^5+y^5-x^4y-xy^4=x^4\left(x-y\right)-y^4\left(x-y\right)\)

       \(=\left(x^4-y^4\right)\left(x-y\right)=\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)^2\)

tự lập luộn nha \(\Rightarrow x^5+y^5-x^4y-xy^4\ge0\)

\(\Rightarrow x^5+y^5\ge x^4y+xy^4\)

3 tháng 7 2017

\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)

\(\Rightarrow\frac{a+b-c}{c}+2=\frac{a+c-b}{b}+2=\frac{c+b-a}{a}+2\)

\(=\frac{a+b}{c}-1+2=\frac{a+c}{b}-1+2=\frac{c+b}{a}-1+2\)

\(=\frac{a+b}{c}+1=\frac{a+c}{b}+1=\frac{c+b}{a}+1\)

\(=\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)

\(\Rightarrow a=b=c\)Thay vào \(P\)ta được :

\(P=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a\cdot2a\cdot2a}{a^3}=\frac{8a^3}{a^3}=8\)

25 tháng 9 2015

1/

\(A=a^3+a^2-b^3+b^2+ab-3a^2b+3ab^2-3ab\)

\(A=\left(a^3-3a^2b+3ab^2-b^3\right)+\left(a^2-2ab+b^2\right)=\left(a-b\right)^3+\left(a-b\right)^2=7^3+7^2=392\)

 

 

30 tháng 6 2016

Ta có    \(\frac{a+b-c}{c}=\frac{c+b-a}{c}\Leftrightarrow a+b-c=c+b-a\)

                                                         \(a-c=c-a\Leftrightarrow a=c\)

\(\frac{a+b-c}{c}=\frac{a+b}{c}-1\)    ;     \(\frac{a+c-b}{b}=\frac{a+c}{b}-1\) ;   \(\frac{c+b-a}{a}=\frac{c+b}{a}-1\)

 Mà \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\) \(\Leftrightarrow\frac{a+b}{c}=\frac{a+c}{b}=\frac{c+b}{a}\)

Ap dụng tính chất của dãy tỉ so băng nhau ta có

\(\frac{a+b}{c}=\frac{a+c}{b}=\frac{c+b}{a}=\frac{a+b+a+c+c+b}{c+a+b}\)

                                                  \(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Suy ra   \(a+b=2c\) ; \(a+c=2b\) ; \(c+b=2a\)

Thay các đẳng thức trên vào biểu thức P ta có:

  \(P=\frac{2c.2b.2a}{abc}=\frac{8abc}{abc}=8\)

  Vậy P = 8