Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
- fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
Ez lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
\(\text{Đặt }\frac{m}{a}=\frac{n}{b}=\frac{k}{c}=l,\text{ ta có: }\)
\(m=al,n=bl,k=cl\)
\(A=\frac{alx+bly+clz}{ax+by+cz}=\frac{l\left(ax+by+cz\right)}{ax+by+cz}=l\)
Vậy..
\(2,2.\left(x+y\right)=5.\left(y+z\right)=3.\left(x+z\right)\Leftrightarrow\frac{x+y}{5}=\frac{y+z}{2},\frac{y+z}{3}=\frac{x+z}{5}\)
\(\Leftrightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}=\frac{y+z-x-z}{6-10}=\frac{y-x}{-4}=\frac{x-y}{4}=\frac{x+y-x-z}{15-10}=\frac{y-z}{5}\)
\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)
Bài 2/a
Giả sử \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=2k\\b=3k\\c=5k\end{cases}}\)
\(\Rightarrow\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
\(\Rightarrow\frac{3\cdot2k-2\cdot3k}{5}=\frac{2\cdot5k-5\cdot2k}{3}=\frac{5\cdot3k-3\cdot5k}{2}\)
\(\Rightarrow\frac{6k-6k}{5}=\frac{10k-10k}{3}=\frac{15k-15k}{2}\)
\(\Rightarrow\frac{0}{5}=\frac{0}{3}=\frac{0}{2}=0\left(đpcm\right)\)
Bài 2/c
Có a = 2k ; b = 3k ; c = 5k
=> 2 (a - b) (b - c) = a2
=> 2 (2k - 3k) (3k - 5k) = (2k)2
=> 2 (-1)k . (-2)k = 4k2
=> 4k2 = 4k2 (đpcm)
Mình chỉ làm được có vậy thôi, mong bạn thông cảm =))
Chúc bạn học tốt =))
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
\(\Rightarrow\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{15a-10b}{25}=0\\\frac{6c-15a}{9}=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3a-2b=0\\2c-5a=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3a=2b\\2c=5a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\end{cases}}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Đặt x/a=y/b=z/c=k
⇒x=ka (1)
y=kb (2)
z=kc (3)
Ta có
a²/x+b²/y+c²/z (4)
Thay (1);(2);(3)vào (4) ta được:
a²/x+b²/y+c²/z
=a²/ka+b²/kb+c²/kc
=a/k+b/k+c/k
=(a+b+c)/k (*)
Lại có:
(a+b+c)²/(x+y+z) (5)
Thay (1);(2);(3) vào (5) ta được:
(a+b+c)²/(x+y+z)
=(a+b+c)²/(ka+kb+kc)
=(a+b+c)²/k(a+b+c)
=(a+b+c)/k (**)
Từ (*)và(**)
⇒a²/x+b²/y+c²/z=(a+b+c)²/(x+y+z)
Vậya²/x+b²/y+c²/z=(a+b+c)²/(x+y+z) khi x/a=y/b=z/c
với x=y=z khác 0 và a,b,c khác nhau là 1 số bất kỳ khác 0 thì (1) thỏa mãn và (2) không thỏa mãn
=> Không thể CM
ta có: \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}\)
\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-zx}=\frac{c}{z^2-xy}\) (*)
\(\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-zx\right).\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-zx\right).\left(z^2-xy\right)}\)
\(=\frac{a^2-bc}{x^4-3x^2yz+xy^3+xz^3}=\frac{a^2-bc}{x.\left(x^3-3xyz+y^3+z^3\right)}\)
\(\Rightarrow\frac{a^2-bc}{x}=\frac{a^2}{\left(x^2-yz\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)
Làm tương tự như trên. ta có:
\(\frac{b^2-ca}{y}=\frac{b^2}{\left(y^2-zx\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)
\(\frac{c^2-ab}{z}=\frac{c^2}{\left(z^2-xy\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)
Từ (*) \(\Rightarrow\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\left(đpcm\right)\)