K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2016

Đặt x/a=y/b=z/c=k

⇒x=ka        (1)

   y=kb        (2)

   z=kc        (3)

Ta có

a²/x+b²/y+c²/z   (4)

Thay (1);(2);(3)vào (4) ta được:

   a²/x+b²/y+c²/z

=a²/ka+b²/kb+c²/kc

=a/k+b/k+c/k

=(a+b+c)/k                         (*)

Lại có:

(a+b+c)²/(x+y+z)        (5)

Thay (1);(2);(3) vào (5) ta được:

  (a+b+c)²/(x+y+z)

=(a+b+c)²/(ka+kb+kc)

=(a+b+c)²/k(a+b+c)

=(a+b+c)/k                          (**)

Từ (*)và(**)

⇒a²/x+b²/y+c²/z=(a+b+c)²/(x+y+z)

Vậya²/x+b²/y+c²/z=(a+b+c)²/(x+y+z) khi x/a=y/b=z/c

6 tháng 10 2016

xin loi mk 

chua hoc c

nen ko biet lam 

nhae

~~~~~~~~~~~~~~~~~~~

22 tháng 11 2018

bn có lời giải chưa

28 tháng 10 2015

**** cho mình trước rồi mình sẽ giải đúng 100% mình học rồi!

29 tháng 6 2018

Ta có \(\frac{2a+b+c}{b+c}=\frac{2b+c+a}{c+a}=\frac{2c+a+b}{a+b}\Rightarrow\frac{2a}{b+c}+1=\frac{2b}{a+c}+1=\frac{2c}{a+b}+1\)

=> \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{3}{2}\)

^_^ 

21 tháng 12 2018

Bài 1: Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=k\)

\(\Rightarrow\hept{\begin{cases}a=2016k\\b=2017k\\c=2018k\end{cases}}\).Thay vào M,ta có:

 \(M=4\left(2016k-2017k\right)\left(2017k-2018k\right)-\left(2018k-2016k\right)^2\)

\(=4.\left(-1k\right)\left(-1k\right)-\left(2k\right)^2\)

\(=4k^2-4k^2=0\)

10 tháng 1 2017

Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)

*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)

\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)

*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)

10 tháng 1 2017

a)

Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)

Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thế (1) vào biểu thức B

\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)

\(\Rightarrow B=2.2.2=8\)

Vậy biểu thức \(B=8\)

15 tháng 3 2018

CM :\(\frac{a^2}{x}+\frac{b^2}{y}=\frac{\left(a+b\right)^2}{x+y}\)  " Cm thế này cho gọn dễ nhìn ok "

\(a^2y\left(x+y\right)+b^2x\left(x+y\right)=xy\left(a^2+2ab+b^2\right).\) " quy đồng khửi mẫu "

\(a^2yx+a^2y^2+b^2x^2+b^2yx=a^2xy+2abxy+b^2xy\) " tính 

\(\left(a^2yx-a^2yx\right)+\left(b^2xy-b^2xy\right)+\left(a^2y^2+2abxy+b^2x^2\right)=0\) " nhóm "

\(\left(a^2y^2+2abxy+b^2x^2\right)=0\) rút gọn

\(\left(ay+bx\right)^2=0\)" hằng đẳng thức "

\(\left(ay+bx\right)^2=0\) " đúng dcpcm "