K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2020

\(AB+4=\left(11...1+4\right)\left(11...1+8\right)+4=\) (có n+1 chữ số 1)

\(=11...1^2+12x11...1+36=\left(11...1+2x6x11...1+6^2\right)=\)

\(=\left(11...1+6\right)^2=11...7^2\) (có n chữ số 1) 

30 tháng 9 2015

a) Nếu tổng các chữ số của một số \(A\) nào đó bằng 2004, thì vì 2004 chia hết cho 3 nên \(A\) cũng chia hết cho 3 (dấu hiệu nhận biết). Phản chứng, nếu  \(A\) là số chính phương thì \(A\) chia hết cho 9, do đó tổng các chữ số của nó cũng phải chia hết cho 9 (dấu hiệu nb). Suy ra 2004 chia hết cho 9, vô lí.  Vậy \(A\) không là số chính phương.

b) Nếu tổng các chữ số của \(A\) là 2006 thì do 2006 chia 3 dư 2 nên \(A\) cũng chia 3 dư 2. Mà số chính phương chia 3 dư là 0,1. Suy ra \(A\) không thể là số cp.

NM
3 tháng 9 2021

ta có 

\(A=111..1000..0+222..2+3=10^{2007}\left(1+10+..+10^{2004}\right)+2.\left(1+10+..+10^{2006}\right)+3\)

\(=10^{2007}.\frac{10^{2005}-1}{9}+2.\frac{10^{2007}-1}{9}+3=\frac{10^{2.2006}-10.10^{2006}+25}{9}=\left(\frac{10^{2006}-5}{3}\right)^2\)

rõ ràng Alà số tự nhiên nên \(\left(\frac{10^{2006}-5}{3}\right)\) là số tự nhiên, vậy ta có đpcm

19 tháng 12 2020

Câu hỏi:

cho A là số chính phương gồm 4 chữ số nếu ta thêm vào mỗi số của A 1 đơn vị thì ta được số chính phương B hãy tìm A , B

Câu trả lời:

Đặt a=n^2, b=k^2 Để thay b-a=k^2-n^2=1111=101*11 =>(k-n)(k+n)=101*11 Giải hệ (k+n=101 ;k-n=11) =>k=56;n=45 a=2025;b=3136

   
19 tháng 12 2020

Câu hỏi:

cho A là số chính phương gồm 4 chữ số nếu ta thêm vào mỗi số của A 1 đơn vị thì ta được số chính phương B hãy tìm A , B

Câu trả lời:

Đặt a=n^2, b=k^2 Để thay b-a=k^2-n^2=1111=101*11 =>(k-n)(k+n)=101*11 Giải hệ (k+n=101 ;k-n=11) =>k=56;n=45 a=2025;b=3136