Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 2B= 2.(\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+...+\(\frac{1}{2^{2016}}\))
=>2B= \(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+...+\(\frac{1}{2^{2017}}\)
=>2B-B= \(\frac{1}{2^{2017}}\)- \(\frac{1}{2}\)
Mà \(\frac{1}{2}\) >\(\frac{1}{2^{2017}}\)
=>B<0<1 (đpcm)
\(\frac{B}{2}=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2017}}.\)
\(\frac{B}{2}=B-\frac{B}{2}=\frac{1}{2}-\frac{1}{2^{2017}}\Rightarrow B=1-\frac{1}{2^{2016}}< 1\)
2/
S = 2 + 22 + 23 +...+ 299
= (2+22+23) +...+ (297+298+299)
= 2(1+2+22)+...+297(1+2+22)
= 2.7 +...+ 297.7
= 7(2+...+297) chia hết cho 7
S = 2+22+23+...+299
= (2+22+23+24+25)+...+(295+296+297+298+299)
= 2(1+2+22+23+24)+...+295(1+2+22+23+24)
= 2.31+...+295.31
= 31(2+...+295) chia hết cho 31
3/
A = 1+5+52+....+5100 (1)
5A = 5+52+53+...+5101 (2)
Lấy (2) - (1) ta được
4A = 5101 - 1
A = \(\frac{5^{101}-1}{4}\)
4/
Đặt A là tên của biểu thức trên
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
........
\(\frac{1}{8^2}< \frac{1}{7.8}=\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}< 1\)
Vậy...
5/
a, Gọi UCLN(n+1,2n+3) = d
Ta có : n+1 chia hết cho d => 2(n+1) chia hết cho d => 2n+2 chia hết cho d
2n+3 chia hết cho d
=> 2n+2 - (2n+3) chia hết cho d
=> -1 chia hết cho d => d = {-1;1}
Vậy...
b, Gọi UCLN(2n+3,4n+8) = d
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
4n+8 chia hết cho d
=> 4n+6 - (4n+8) chia hết cho d
=> -2 chia hết cho d => d = {1;-1;2;-2}
Mà 2n+3 lẻ => d lẻ => d khác 2;-2 => d = {1;-1}
Vậy...
Lời giải:
$B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}$
$2B=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2015}}$
Trừ theo vế:
$2B-B=1-\frac{1}{2^{2016}}$
$B=1-\frac{1}{2^{2016}}< 1$ (đpcm)
Ta có:
S = 1/22 + 1/32 + 1/42 + ... + 1/20162
= 1/2.2 + 1/3.3 + 1/4.4 + ... + 1/2016.2016
S < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2015.2016
S < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2015 - 1/2016
S < 1 - 1/2016
Mà 1 - 1/2016 < 1
=> S < 1
Vậy S < 1
Ủng hộ nha
Ta có:
\(A=\frac{1}{2}+\frac{1}{2^2}+........+\frac{1}{2^{2017}}\)
\(\Rightarrow2A=1+\frac{1}{2}+.........+\frac{1}{2^{2016}}\)
Khi đó:
\(2A-A=\left(1+\frac{1}{2}+.....+\frac{1}{2^{2016}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{2017}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{2017}}\)
\(\Rightarrow A=\frac{2^{2017}-1}{2^{2017}}\)
\(\Rightarrow A< 1\)
VẬy: A < 1
Ta có: 1/2+1/2^2+...+1/2^2017<1/1.2+1/2.3+...+1/2016.2017
1/2<1/1.2
1/2^2<1/2.3
..........
1/2^2017<1/2016.2017
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{8^2}< \frac{1}{7.8}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B< 1-\frac{1}{8}\)
\(\Rightarrow B< \frac{7}{8}\)
\(\Rightarrow B< \frac{8}{8}=1\)
Vậy \(B< 1\left(Đpcm\right)\)
Chúc bạn học tốt !!!
nhan xet1/2^2<1/1.2=1/1-1/2
1/3^2<1/2.3=1/2-1/3
1/4^2<1/3.4=1/3-1/4
..................................
1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/8<
1/1-1/8=8/8-1/8=7/8<1 vay B<1
B < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
B < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
B < \(1-\frac{1}{8}\)mà 1 - 1/8 < 1
=> B < 1 ( dpcm )
Vậy ...
\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}< 1-\frac{1}{8}=\frac{7}{8}< 1\)
Vậy B<1
Hok tốt
ta có: \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(\Rightarrow2B-B=1-\frac{1}{2^{2016}}\)
\(\Rightarrow B=\frac{2^{2016}-1}{2^{2016}}< 1\)
\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}< 1\left(đpcm\right)\)
để B > 1 thì 2B = 1+1/22+....+1/22015
B=1/2+1/22+....+1/22017
B=1-1/22018
Vậy B < 1