Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải :
B = ax .by, suy ra B2 = a2x .b2y
Số ước tự nhiên của B2 là (2x + 1)(2y + 1) = 15
Vì x, y là các số tự nhiên khác 0 (x>y) nên suy ra :
2x + 1 = 5 và 2y + 1 = 3
Suy ra x = 2 và y = 1
Suy ra B3 = a3x .b3y = a6.b3
Vậy số ước tự nhiên của B3 là : (6+1)(3+1) = 28 ước.
Giai mà ko k giải mệt
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
Ta thấy: B = axby => B2=a2xb2y.
=> Số ước của B2 là: (2x+1)(2y+1) = 15
Vì x, y khác 0 nên x, y >= 1
Do đó 2x, 2y >= 2
=> 2x + 1, 2y + 1 >= 3
Ta có: 15 = 1 x 15 = 3 x 5
Trong 2 cặp tích trên, chỉ cặp tích 3 x 5 có 2 thừa số đều lớn hơn 3
=> (2x+1;2y+1) thuộc {(3;5);(5;3)}
=> (x;y) thuộc {(1;2);(2;1)}
=> B3 = a3b6 = a6b3
=> Số ước của B3 là: 4 x 7 = 28(ước)
Ta có:
B = 2x . 3y
B2 = 22x . 32y
=> số ước của B2 là (2x + 1).(2y + 1) = 15
+ Nếu x > y thì 2x + 1 = 5; 2y + 1 = 3
=> x = 2; y = 1
=> số ước của B3 là (3.2 + 1).(3.1 + 1) = 40 (ước)
+ Nếu x < y thì 2x + 1 = 3; 2y + 1 = 5
=> x = 1; y = 2
=> số ước của B3 là (3.1 + 1).(3.2 + 1) = 40 (ước)
Vậy B3 có 40 ước
Chú ý: ta loại trường hợp: 2x + 1 = 15; 2y + 1 = 1 hoặc ngược lại vì khi đó 1 trong 2 số x hoặc y = 0, không đúng với đề bài là x; y là các số tự nhiên khác 0
Ta có:
B = 2x . 3y
B2 = 22x . 32y
=> số ước của B2 là (2x + 1).(2y + 1) = 15
+ Nếu x > y thì 2x + 1 = 5; 2y + 1 = 3
=> x = 2; y = 1
=> số ước của B3 là (3.2 + 1).(3.1 + 1) = 40 (ước)
+ Nếu x < y thì 2x + 1 = 3; 2y + 1 = 5
=> x = 1; y = 2
=> số ước của B3 là (3.1 + 1).(3.2 + 1) = 40 (ước)
Vậy B3 có 40 ước
Chú ý: ta loại trường hợp: 2x + 1 = 15; 2y + 1 = 1 hoặc ngược lại vì khi đó 1 trong 2 số x hoặc y = 0, không đúng với đề bài là x; y là các số tự nhiên khác 0
Giải:
Ta có:
\(B=a^x.b^y\)
\(\Rightarrow B^2=a^{2x}.b^{2y}\)
\(\Rightarrow\left(2x+1\right)\left(xy+1\right)=15\)
\(\Rightarrow15=3.5\Rightarrow\left\{\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Lại có:
\(B^3=a^{3x}.b^{3y}\)
\(\Rightarrow\left(3x+1\right)\left(3y+1\right)\)
\(=\left(3.1+1\right)\left(3.2+1\right)\)
\(=4.7=28\)
Vậy \(B^3\) có \(28\) ước