Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5+5^2+5^3+...+5^{2021}\)
\(=5\left(1+5\right)+5^2\left(1+5\right)+...+5^{2020}\left(1+5\right)\)
\(=5.6+5^2.6+...+5^{2020}.6\)
\(=6\left(5+5^2+...+5^{2020}\right)\)
Vì \(6\left(5+5^2+...+5^{2020}\right)\) ⋮6
⇒A không là số chính phương
\(S=5+5^2+5^3+...+5^{2020}+5^{2021}\)
=>\(5\cdot S=5^2+5^3+5^4+...+5^{2021}+5^{2022}\)
=>\(5S-S=5^2+5^3+...+5^{2021}+5^{2022}-5-5^2-5^3-...-5^{2020}-5^{2021}\)
=>\(4S=5^{2022}-5\)
=>\(4S+5=5^{2022}\)
\(B=5+5^2+5^3+...+5^{2021}\)
\(5B=5^2+5^3+5^4+...+5^{2022}\)
\(5B-B=\left(5^2+5^3+...+5^{2022}\right)-\left(5+5^2+5^3+...+5^{2021}\right)\)
\(4B=5^{2022}-5\)
\(B=\frac{5^{2022}-5}{4}\)
\(B+8=\frac{5^{2022}-5}{4}+8=\frac{5^{2022}+27}{4}\)
Nếu \(B+8=n^2\left(n\inℕ^∗\right)\Rightarrow5^{2022}+27=4n^2=\left(2n\right)^2\)là bình phương một số tự nhiên.
Mà ta có: \(5^{2022}< 5^{2022}+27< 5^{2022}+2.5^{1011}+1=\left(5^{2022}+1\right)^2\)
Do đó \(5^{2022}+27\)không là bình phương một số tự nhiên.
Suy ra đpcm.
\(A=4+2^2+2^3+...+2^{2005}\)
\(2A=4+2^2+2^3+...+2^{2006}\)
\(2A-A=\left(4+2^2+2^3+...+2^{2006}\right)-\left(4+2^2+2^3+...+2^{2005}\right)\)
\(A=4+2^2+2^3+...+2^{2006}-4-2^2-2^3-...-2^{2005}\)
\(A=2^{2006}\)
Vậy A là 1 luỹ thừa của cơ số 2
\(B=5+5^2+...+5^{2021}\)
\(5B=5^2+5^3+...+5^{2022}\)
\(5B-B=\left(5^2+5^3+...+5^{2022}\right)-\left(5+5^2+...+5^{2021}\right)\)
\(4B=5^{2022}-5\)
\(B=\frac{5^{2022}-5}{4}\)
\(B+8=\frac{5^{2022}-5}{4}+8\)
\(B+8=\frac{5^{2022}-5}{4}+\frac{32}{4}\)
\(B+8=\frac{5^{2022}-5+32}{4}\)
\(B+8=\frac{5^{2022}+27}{4}\)
=> B + 8 k thể là số b/ph của 1 số tn
a) M = \(5+5^2+5^3+...+5^{80}\)
\(\Leftrightarrow M=5.\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)
\(\Leftrightarrow M=5.6+5^3.6+...+5^{79}.6\)
\(\Leftrightarrow M=6.\left(5+5^3+...+5^{79}\right)⋮6\)
=> M chi hết cho 6 => điều phải chứng minh
) M = (5+5^2) + (5^3+5^4) + … + (5^79+5^80)
M = 5(1+5) + 5^3(1+5) + … + 5^79(1+5)
M= 5.6 + 5^3.6 + … + 5^79.6
M = 6(5+5^3+…+5^79) chia hết cho 6
b) Ta thấy : M = 5 + 52+ 53+ ... + 580 cchia hết cho số nguyên tố 5
Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)
=> M = 5 + 52 + 53 + ... + 580 không chia hết cho 52 (do 5 không chia hết cho 52)
=> M chia hết cho 5 nhưng không chia hết cho 52
=> M không phải số chính phương