K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2019

\(A=\dfrac{10}{a^m}+\dfrac{10}{a^n}=\dfrac{10a^n+10a^m}{a^{m+n}}\)

\(B=\dfrac{11}{a^m}+\dfrac{9}{a^n}=\dfrac{11a^n+9a^m}{a^{m+n}}\)

Cần so sánh: \(10a^m+10a^n\)\(9a^m+11a^n\)

\(10a^m+10a^n-9a^m-11a^n\)

\(=a^m-a^n\)

Vậy m < n thì A > B, m < n thì A < B

22 tháng 1 2019

Hỏi đáp Toán

28 tháng 9 2021

\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)

\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)

DT
25 tháng 6 2023

`a)` Xét tử số phân số M :

\(2012-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{2012}{2020}\\ =\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{2012}{2020}\right)\\ =\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{2020}\\ =24\left(\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}\right)\)

Ta được : \(M=\dfrac{24\left(\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}\right)}{\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}}=24\)

 

DT
25 tháng 6 2023

`b)` Xét tử số phân số N :

\(\dfrac{1}{1.300}+\dfrac{1}{2.301}+\dfrac{1}{3.302}+...+\dfrac{1}{101.400}\\ =\dfrac{1}{299}.\left(\dfrac{299}{1.300}+\dfrac{299}{2.301}+\dfrac{299}{3.302}+...+\dfrac{299}{101.400}\right)\\ =\dfrac{1}{299}.\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)

Xét mẫu số phân số N :

\(\dfrac{1}{1.102}+\dfrac{1}{2.103}+\dfrac{1}{3.104}+...+\dfrac{1}{299.400}\\ =\dfrac{1}{101}.\left(\dfrac{101}{1.102}+\dfrac{101}{2.103}+\dfrac{101}{3.104}+...+\dfrac{101}{299.400}\right)\\ =\dfrac{1}{101}.\left(1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+\dfrac{1}{3}-\dfrac{1}{104}+...+\dfrac{1}{299}-\dfrac{1}{400}\right)\)

\(=\dfrac{1}{101}.\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)

Ta được: \(N=\dfrac{\dfrac{1}{299}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)}{\dfrac{1}{101}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)}\\ =\dfrac{\dfrac{1}{299}}{\dfrac{1}{101}}=\dfrac{101}{299}\)

7 tháng 4 2017

Bài 2:
a, Có: \(3^x=28-3^{x+3}\)
\(\Leftrightarrow3^x+3^{x+3}=28\)
\(\Leftrightarrow3^x+3^x.3^3=28\)
\(\Leftrightarrow3^x\left(1+3^3\right)=28\)
\(\Leftrightarrow3^x.28=28\)
\(\Leftrightarrow3^x=1\)
=> x = 0
Vậy x=0 là giá trị cần tìm

b, Đặt \(\left|x-1\right|=t\left(t\ge0\right)\)
Phương trình đã cho trở thành: \(t^2-2t=0\)
\(\Leftrightarrow t\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\) (TMĐK)
Với t =0 ta có | x-1 | =0
=> x-1=0
=> x=1
Với t=2 ta có |x-1| =2
\(\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy các số nguyên x cần tìm là x=1 hoặc x=-1

7 tháng 4 2017

Em cảm ơn chị nhiều, chị giúp em bài bài nữa được không ạ

8 tháng 11 2017

Câu 1:

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\left(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}\right)\) - \(\left(\dfrac{x+1}{13}+\dfrac{x+1}{14}\right)=0\)

\(\Rightarrow\left(x+1\right).\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)\)= 0

\(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)

\(\Rightarrow x+1=0\)

=> x = 0 - 1

=> x = -1

8 tháng 11 2017

Câu 2:

Ta có: \(A=\dfrac{3n+9}{n-4}=\dfrac{3n-3.4+9+12}{n-4}\)

\(=\dfrac{3.\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)

Để A có giá trị nguyên thì:

n - 4 \(\in\) Ư(21)

=> n - 4 \(\in\)

n4 3 -3 7 -7 -1 1 -21 21
n 7 1 11 -3 3 5 -17 25

27 tháng 1 2021

Nếu \(a>b\Rightarrow an>bn\Rightarrow ab+an>ab+bn\)

\(\Leftrightarrow a\left(b+n\right)>b\left(a+n\right)\)

\(\Leftrightarrow\dfrac{a+n}{b+n}< \dfrac{a}{b}\)

Nếu \(a< b\Rightarrow an< bn\Rightarrow ab+an< ab+bn\)

\(\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)

\(\Leftrightarrow\dfrac{a+n}{b+n}>\dfrac{a}{b}\)

27 tháng 9 2017

C1:

a/5=b/9=a-b/5-9=9/-4=-2.25(theo tính chất dãy tỉ số bằng nhau)

Với a/5=-2.25 suy ra a=-2.25×5=-11/25

Với b/9=-2.25 suy ra b=-2.25×9=-11.25

B:n/10=m/5=z/4=n-m+z/10-5+4=2/

25 tháng 7 2023

Bài 3 :

\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)

\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)

\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)

\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)

.....

\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)

\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)

25 tháng 7 2023

Bạn xem lại đề 2, phần mẫu của N

Câu 2: 

Ta có: \(x^2=1\)

=>x=1 hoặc x=-1

=>x là số hữu tỉ