Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(am^3=bn^3=cp^3=k^3\)
\(\Rightarrow\)\(a=\frac{k^3}{m^3};\) \(b=\frac{k^3}{n^3};\) \(c=\frac{k^3}{p^3}\)
Ta có: \(VT=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
\(=\sqrt[3]{\frac{k^3}{m^3}}+\sqrt[3]{\frac{k^3}{n^3}}+\sqrt[3]{\frac{k^3}{p^3}}\)
\(=\frac{k}{m}+\frac{k}{n}+\frac{k}{p}=k\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)=k\)
\(VP=\sqrt[3]{am^2+bn^2+cp^2}\)
\(=\sqrt[3]{\frac{k^3}{m}+\frac{k^3}{n}+\frac{k^3}{p}}\)
\(=\sqrt[3]{k^3\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)}\)
\(=\sqrt[3]{k^3}=k\)
suy ra: đpcm
bài này ở trong Sách nâng cao và phát triển toán 9 tập 1 của ông Vũ Hữu Bình ý
Đặt \(am^3=bn^3=cp^3=k\)
Ta có \(\sqrt[3]{k}=\sqrt[3]{a}m=\sqrt[3]{b}n=\sqrt[3]{c}p=\frac{\sqrt[3]{a}}{\frac{1}{m}}=\frac{\sqrt[3]{b}}{\frac{1}{n}}=\frac{\sqrt[3]{c}}{\frac{1}{p}}\)
\(=\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\frac{1}{m}+\frac{1}{n}+\frac{1}{p}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\) \(\left(TCDTSBN\right)\)\(\left(1\right)\)
Ta cũng có \(k=\frac{am^2}{\frac{1}{m}}=\frac{bn^2}{\frac{1}{n}}=\frac{cp^2}{\frac{1}{p}}=\frac{am^2+bn^2+cp^2}{\frac{1}{m}+\frac{1}{n}+\frac{1}{p}}=am^2+bn^2+cp^2\) \(\left(TCDTSBN\right)\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cp^2}=\sqrt[3]{k}\)
cách khác nhé:
Đặt: \(am^3=bn^3=cp^3=k^3\)
\(\Rightarrow\)\(a=\frac{k^3}{m^3};\)\(b=\frac{k^3}{n^3};\)\(c=\frac{k^3}{p^3}\)
Ta có:
\(VT=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
\(=\sqrt[3]{\frac{k^3}{m^3}}+\sqrt[3]{\frac{k^3}{n^3}}+\sqrt[3]{\frac{k^3}{p^3}}\)
\(=\frac{k}{m}+\frac{k}{n}+\frac{k}{p}=k\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)=k\) (do 1/m + 1/n + 1/p = 1)
\(VP=\sqrt[3]{am^2+bn^2+cp^2}\)
\(=\sqrt[3]{\frac{k^3}{m^3}.m^2+\frac{k^3}{n^3}.n^2+\frac{k^3}{p^3}.p^2}\)
\(=\sqrt[3]{k^3\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)}=\sqrt[3]{k^3}=k\) (do 1/m + 1/n + 1/p = 1)
suy ra: \(VT=VP=k\) (đpcm)
=>\(am^3=bn^3=cp^3=\frac{am^3}{m}+\frac{bn^3}{n}+\frac{cp^3}{p}\)
=>\(am^3=bn^3=cp^3=am^2+bn^2+cp^2\)
\(\sqrt[3]{am^2+bn^2+cp^2}=m\sqrt[3]{a}=n\sqrt[3]{b}=p\sqrt[3]{c}\)
=>\(\sqrt[3]{am^2+bn^2+cp^2}.1=m\sqrt[3]{a}.\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)=\frac{m\sqrt[3]{a}}{m}+\frac{n\sqrt[3]{b}}{n}+\frac{p\sqrt[3]{c}}{p}\)
\(\sqrt[3]{am^2+bn^2+cp^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
đặt \(am^3=bn^3=cp^3=k^3\)
\(\Rightarrow a=\dfrac{k^3}{m^3};b=\dfrac{k^3}{n^3};c=\dfrac{k^3}{p^3}\)
VT=\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\dfrac{k}{m}+\dfrac{k}{n}+\dfrac{k}{p}=k\)
VF=\(\sqrt[3]{\dfrac{k^3}{m}+\dfrac{k^3}{n}+\dfrac{k^3}{p}}=\sqrt[3]{k^3}=k\)
do đó VT=VF, đẳng thức được chứng minh
À mình viết lộn đề câu 1, co mình sửa lại nhá!
1) Tìm số nguyên n thỏa:
\(\sqrt[3]{n+\sqrt{n^2+27}}+\sqrt[3]{n-\sqrt{n^2+27}}=4\)
Khi đó nếu bỏ chữ số tận cùng thì số mới là abc
Ta có:
abc3 - abc = (1000a + 100b + 10c + 3) - (100a + 10b + c)
=> 900a + 90b + 9c + 3=1992
=> 900a + 90b + 9c=1989
=> 9(100a + 10b + c)=1989
=> 100a + 10b + c = 221
=> abc = 221
=> abc3 = 2213
Vậy số cần tìm là 2213
Đặt VP=A
có căn bâc 3 (am^2+bn^2+cp^2=căn bậc 3 (am^3/m+bn^3/n+cp^3/p)=căn bậc 3 (am^3(1/m+1/n+p)) (do am^3=bn^3=cp^3)
=căn bậc 3 (am^3) (do 1/m+1/n+1/p=1)=> m.căn bậc 3(a)=A=>căn bậc 3 (a)=A/m
tương tự căn bậc 3 (b)=A/n, căn bậc 3 (p)=A/p
Cộng theo vế => VT = A/m+A/n+A/p=A(1/m+1/n+1/p)=A=VP (do 1/m+1/n+1/p=1)
\(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=1\Leftrightarrow\)\(\frac{mn+np+mp}{mnp}=1\Leftrightarrow mn+np+mp=mnp\)
Ta có: \(am^3=bn^3=cp^3\Leftrightarrow\)\(\sqrt[3]{am^3}=\sqrt[3]{bn^3}=\sqrt[3]{cp^3}\)\(\Leftrightarrow\sqrt[3]{a}m=\sqrt[3]{b}n=\sqrt[3]{c}p\)
\(\frac{\sqrt[3]{a}m}{mnp}=\frac{\sqrt[3]{b}n}{mnp}=\frac{\sqrt[3]{c}p}{mnp}\Leftrightarrow\)\(\frac{\sqrt[3]{a}}{np}=\frac{\sqrt[3]{b}}{mp}=\frac{\sqrt[3]{c}}{mn}\Leftrightarrow\)\(\frac{\sqrt[3]{a}}{np}=\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{mn+np+mp}\Leftrightarrow\)\(\frac{\sqrt[3]{a}}{np}=\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{mnp}\Leftrightarrow\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{a}m\)
Mặt khác: \(am^3=bn^3=cp^3\Leftrightarrow\)\(\frac{am^3}{mnp}=\frac{bn^3}{mnp}=\frac{cp^3}{mnp}\Leftrightarrow\)\(\frac{am^2}{np}=\frac{bn^2}{mp}=\frac{cp^2}{mn}\Leftrightarrow\)
\(\frac{am^2}{np}=\frac{am^2+bn^2+cp^2}{mn+np+mp}=\frac{am^2+bn^2+cp^2}{mnp}\)\(\Leftrightarrow am^2+bn^2+cp^2=am^3\Leftrightarrow\sqrt[3]{am^2+bn^2+cp^2}=\sqrt[3]{a}m\)
Vậy =>dpcm