Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)
=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)
=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)
=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)
Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)
=>16A<1
Do đó: A<1/16(đpcm)
1) \(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}\)
\(5P=\frac{1}{5^1}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\)
\(5P-P=\frac{1}{5^1}+\left(\frac{2}{5^2}-\frac{1}{5^2}\right)+\left(\frac{3}{5^3}-\frac{2}{5^3}\right)+...+\left(\frac{11}{5^{11}}-\frac{10}{5^{11}}\right)-\frac{11}{5^{12}}\)
\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)
Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)
\(5A-A=1+\frac{1}{5}-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)
\(4A=1-\frac{1}{5^{11}}\Rightarrow A=\frac{1-\frac{1}{5^{11}}}{4}\)
\(4P=\frac{1-\frac{1}{5^{11}}}{4}-\frac{11}{5^{12}}=\frac{1-\frac{1}{5^{11}}}{16}-\frac{11}{5^{12}\cdot4}< \frac{1}{16}\)
\(\Rightarrow5H=\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\)
\(\Rightarrow5H-H=\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{11}{5^{12}}\right)\)
\(\Rightarrow4H=\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)
Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\)
\(\Rightarrow5A=1+\frac{1}{5}+...+\frac{1}{5^{10}}\)
\(\Rightarrow5A-A=\left(1+..+\frac{1}{5^{10}}\right)-\left(\frac{1}{5}+...+\frac{1}{5^{11}}\right)\)
\(\Rightarrow4A=1-\frac{1}{5^{11}}\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{4.5^{11}}\)
\(\Rightarrow4H=\frac{1}{4}-\frac{1}{4.5^{11}}-\frac{11}{5^{12}}\)
\(\Rightarrow H=\frac{1}{16}-\frac{1}{4^2.5^{11}}-\frac{11}{4.5^{12}}\)
Ta có : \(5H=\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\)
\(\Rightarrow4H=\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{11}{5^{12}}\right)=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}+\frac{11}{5^{12}}\)
\(\Rightarrow20H=1+\frac{1}{5}+...+\frac{1}{5^{10}}+\frac{11}{5^{11}}\)
\(\Rightarrow16H=20H-4H=1+\frac{10}{5^{11}}-\frac{11}{5^{12}}\Leftrightarrow H=\frac{1+\frac{10}{5^{11}}-\frac{11}{5^{12}}}{16}.\)
a, \(\frac{-5}{7}.\frac{2}{11}+\frac{-5}{7}.\frac{9}{11}.\frac{12}{7}\)
\(=\frac{-5}{7}.\left(\frac{2}{11}+\frac{9}{11}\right)+\frac{12}{7}\)
\(=\frac{-5}{7}.1+\frac{12}{7}=\frac{-5}{7}+\frac{12}{7}=\frac{7}{7}=1\)
Ta có : \(A=\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\)
=> \(5A=\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\)
Lấy 5A trừ A theo vế ta có :
5A - A = \(\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\right)\)
4A = \(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)-\frac{11}{5^{12}}\)
Đặt B = \(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\)
=> 5B = \(1+\frac{1}{5}+...+\frac{1}{5^{10}}\)
Lấy 5B trừ B ta có :
=> 5B - B = \(\left(1+\frac{1}{5}+...+\frac{1}{5^{10}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)\)
=> 4B =\(1-\frac{1}{5^{11}}\)
=> B = \(\frac{1}{4}-\frac{1}{5^{11}.4}\)
Khi đó 4A = \(\frac{1}{4}-\frac{1}{5^{11}.4}-\frac{1}{5^{12}}\)
=> A = \(\frac{1}{16}-\left(\frac{1}{5^{11}.16}+\frac{1}{5^{12}.4}\right)< \frac{1}{16}\left(\text{ĐPCM}\right)\)
cậu ơi , mình quên không ghi 1 dữ liệu ạ
n thuộc N
V ậy có cần phải chỉnh sửa ở trong bài làm không ạ?????