K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

2.

a) Ta có:

\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right)\left(\frac{1}{13}+\frac{1}{14}\right)\)

Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\ne\frac{1}{13}+\frac{1}{14}\)nên \(x+1=0\Leftrightarrow x=-1\)

Vậy x = -1

b) Ta có:

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}\right)=\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{2003}\right)\)

Vì \(\frac{1}{2000}+\frac{1}{2001}\ne\frac{1}{2002}+\frac{1}{2003}\)nên \(x+2004=0\Leftrightarrow x=-2004\)

Vậy, x = -2004

Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.b, Tìm số nguyên a để \(\frac{5}{4}\): \(\frac{a}{a+1}\)được thương là một số nguyên.c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiênBài 2:a,Với giá trị nào của x thì ta...
Đọc tiếp

Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.

b, Tìm số nguyên a để \(\frac{5}{4}\)\(\frac{a}{a+1}\)được thương là một số nguyên.

c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiên

Bài 2:a,Với giá trị nào của x thì ta có:

1,A= \(\left(x-\frac{3}{4}\right)\left(x+\frac{1}{2}\right)\)là số dương                  2,B=\(\frac{x-0,5}{x+1}\)là số âm.

b,Cho phân số \(\frac{a}{b}\left(b\ne0\right)\).Tìm phân số \(\frac{c}{d}\left(c\ne0,d\ne0\right)\)sao cho \(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\)

c, Tìm các cặp số nguyên (x,y) để: \(B=\frac{1}{x-y}:\frac{x+2}{2\left(x-y\right)}\)là số nguyên.

Bài 3: a, Tính : A=\(\left(-2\right)\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{n}\right)\left(n\in N,n\ne0\right)\)

B=\(\frac{4\frac{1}{4}}{11\frac{1}{3}.5\frac{1}{4}}\)     C= \(\frac{-1:1\frac{1}{15}}{3\frac{1}{8}:6\frac{2}{3}}:\frac{4\frac{7}{8}:13}{5:1\frac{7}{8}}\)    D=\(-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)

E=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\)   F=\(4+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}\)

 

 

4
25 tháng 8 2017

fewqfjkewqf

25 tháng 8 2017

Các bạn ơi giải giúp mink vs mink đg cần gấp

9 tháng 8 2017

1) x(x-2) + 3(x+5) + 4x -15 =0

=> x\(^2\) - 2x + 3x + 15 + 4x - 15 = 0

=> ( x\(^2\) -2x + 3x + 4x ) + 15 - 15 = 0

=> x \(^2\) -2x+3x+4x = 0

=> x(x-2+3+4)=0

\(\Rightarrow\orbr{\begin{cases}x=0\\x-2+3+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}}\)

2) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}=2017\)

\(\Rightarrow2017\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=2017.2017\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=2017^2\)

\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}=2017^2\)

\(\Rightarrow\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+c}+\frac{c}{a+b}\right)=2017^2\)

\(\Rightarrow\left(1+\frac{c}{a+b}\right)+\left(1+\frac{a}{b+c}\right)+\left(1+\frac{c}{a+b}\right)=2017^2\)

\(\Rightarrow3+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2017^2\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2017^2-3\)

9 tháng 8 2017

xin lỗi mik xin đc sửa lại 3 dòng cuối vì mik ghi nhầm :

\(\Rightarrow\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+c}+\frac{b}{a+c}\right)=2017^2\)

\(\Rightarrow\left(1+\frac{c}{a+b}\right)+\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{a+c}\right)=2017^2\)

\(\Rightarrow3+\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}=2017^2\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2017^2-3\)

18 tháng 1 2019

\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)

\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)

\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất

Mà \(\left|2018x-2019\right|\ge0\)

\(\Rightarrow\left|2018x-2019\right|+1\ge1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left|2018x-2019\right|=0\)

\(\Leftrightarrow x=\frac{2019}{2018}\)

Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)

18 tháng 1 2019

\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)

\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)

\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)

\(\Rightarrow5^x=3^{2x}\)

Mà \(\left(5;3\right)=1\)

\(\Rightarrow x=2x=0\)

4 tháng 7 2018

a) \(A=\frac{5^4.20^4}{25^5.4^5}=\frac{5^4.\left(2^2.5\right)^4}{5^{2^5}.\left(2^2\right)^5}=\frac{5^8.2^8}{5^{10}.2^{10}}=\frac{1}{\left(5^{10}:5^8\right).\left(2^{10}:2^8\right)}=\frac{1}{5^2.2^2}=\frac{1}{25.4}=\frac{1}{100}\)

b) \(B=\frac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}\)\(=\frac{2^3+2^3}{1}=\frac{8+8}{1}=16\)

c) \(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...........+\frac{1}{2^{100}}\)

\(\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+..........+\frac{1}{2^{99}}\)

\(\Rightarrow2C-C=\left(1+\frac{1}{2}+\frac{1}{2^2}+.........+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...........+\frac{1}{2^{100}}\right)\)

\(\Rightarrow C=1-\frac{1}{2^{100}}\)

d) \(D=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+.........+\frac{1}{5^{100}}\)

\(\Rightarrow5D=5+1+\frac{1}{5^2}+\frac{1}{5^3}+...........+\frac{1}{5^{101}}\)

\(\Rightarrow5D-D=\left(5+1+\frac{1}{5^2}+\frac{1}{5^3}+.........+\frac{1}{5^{101}}\right)-\left(1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+..........+\frac{1}{5^{100}}\right)\)

\(\Rightarrow4D=5-\frac{1}{5^{101}}\)

\(\Rightarrow D=\frac{5-\frac{1}{5^{101}}}{4}\)

4 tháng 7 2018

a) \(A=\frac{5^4x20^4}{25^5x4^5}=\frac{5^4x\left(2^2x5\right)^4}{\left(5^2\right)^5x\left(2^2\right)^5}=\frac{5^8.2^8}{5^{10}.2^{10}}=\frac{1}{5^2x2^2}=\frac{1}{25.4}=\frac{1}{100}\)

b) \(B=\frac{2^{30}x5^7+2^{13}x5^{27}}{2^{27}x5^7+2^{10}x5^{27}}=\frac{2^{13}.5^7.\left(2^{17}+5^{20}\right)}{2^{10}.5^7.\left(2^{17}+5^{20}\right)}=2^3=8\)

c) \(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2C-C=1-\frac{1}{2^{100}}\)

\(C=1-\frac{1}{2^{100}}\)

phần d bn lm tương tự như phần c nha!
 

17 tháng 8 2018

a) 

\(A=\left(\frac{19}{24}-\frac{7}{24}\right)-\left(\frac{1}{2}+\frac{1}{3}\right)\)

\(A=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}\)

\(A=\frac{1}{3}\)

\(B=\left(\frac{7}{12}-\frac{5}{12}\right)+\left(\frac{5}{6}+\frac{1}{4}-\frac{3}{7}\right)\)

\(B=\left(\frac{1}{6}+\frac{5}{6}\right)+\frac{1}{4}-\frac{3}{7}\)

\(B=\frac{5}{4}-\frac{3}{7}\)

\(B=\frac{23}{28}\)

17 tháng 8 2018

b)

\(x=A-B\)

\(x=\frac{1}{3}-\frac{23}{28}\)

\(x=\frac{-41}{84}\)

11 tháng 9 2018

từ đề bài ta có \(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=10\)

11 tháng 2 2017

Làm ơn giúp mik với các bn ơi!