Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)ĐK:` \(\begin{cases}x \ge 0\\x-\sqrt{x} \ne 0\\x-1 \ne 0\\\end{cases}\)
`<=>` \(\begin{cases}x \ge 0\\x \ne 0\\x \ne 1\\\end{cases}\)
`<=>` \(\begin{cases}x>0\\x \ne 1\\\end{cases}\)
`b)A=(sqrtx/(sqrtx-1)-1/(x-sqrtx)):(1/(1+sqrtx)+2/(x-1))`
`=((x-1)/(x-sqrtx)):((sqrtx-1+2)/(x-1))`
`=(x-1)/(x-sqrtx):(sqrtx+1)/(x-1)`
`=(sqrtx+1)/sqrtx:1/(sqrtx-1)`
`=(x-1)/sqrtx`
`c)A>0`
Mà `sqrtx>0AAx>0`
`<=>x-1>0<=>x>1`
a, ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
b, Ta có : \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}=\dfrac{x-1}{\sqrt{x}}\)
c, Ta có : \(A>0\)
\(\Leftrightarrow x-1>0\)
\(\Leftrightarrow x>1\)
Vậy ...
a: ĐKXĐ: x>0; x<>1
b: \(A=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{x-1}\)
c: A nguyên
=>x-1 thuộc {1;-1;2;-2}
=>x thuộc {2;3}
a) ĐK: `x>=0; x \ne 1`
b) \(P=\left(3+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(3-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\\ =\dfrac{3\sqrt{x}+3+x+\sqrt{x}}{\sqrt{x}+1}.\dfrac{3\sqrt{x}-3-x+\sqrt{x}}{\sqrt{x}-1}\\ =\dfrac{x+4\sqrt{x}+1}{\sqrt{x}+1}.\dfrac{-x+4\sqrt{x}-3}{\sqrt{x}-1}\\ =\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ =\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)=x-9\)
a) Để A,B có nghĩa \(\Leftrightarrow\begin{cases}x+2\ge0\\x-3\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-2\\x\ge3\end{cases}\)\(\Leftrightarrow x\ge3\)
b) Có: A=B
\(\Leftrightarrow\sqrt{x+2}\cdot\sqrt{x-3}=\sqrt{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x+2\right)\left(x-3\right)}-\sqrt{\left(x+2\right)\left(x-3\right)}=0\)
\(\Leftrightarrow0x=0\) (thỏa mãn với mọi x thuộc ĐK)
Vậy với mọi \(x\ge3\) thì A=B
a) A có nghĩa khi \(\begin{cases}x+2\ge0\\x-3\ge0\end{cases}\) \(\Leftrightarrow x\ge3\)
B có nghĩa khi \(\left(x+2\right)\left(x-3\right)\ge0\) \(\Leftrightarrow\begin{cases}x+2\ge0\\x-3\ge0\end{cases}\) hoặc \(\begin{cases}x+2\le0\\x-3\le0\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge3\\x\le-2\end{array}\right.\)
b) Để A = B tức là cả A và B đều có nghĩa , suy ra đkxđ \(x\ge3\)
Vậy với mọi \(x\ge3\) thì A = B