Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẽ OK vuông góc với AB ta có AK=KB= \(\frac{R\sqrt{3}}{2}\)
áp dụng hệ thức lượng trong tam giác vuông KBO ta có :
\(sin\widehat{KOB}=\frac{KB}{OB}=\frac{\frac{\sqrt{3}}{2}R}{R}=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\widehat{KOB}=60^0\)
Tương tự ta có :\(\widehat{AOK}=60^0\)
gọi sđ cung AnB là số đo cung AB nhỏ .
gọi sđ cung AmB là số đo cung AB lớn .
\(\Rightarrow\widehat{AOB}=120^0\Rightarrow sđAnB=120^0\)
mà \(sđAnB+sđAmB=360^0\)
\(\Rightarrow sđAmB=240^0\)
ta có \(\widehat{AMB}=\frac{sđAmB}{2}=\frac{240^0}{2}=120^0\)
Lời giải:
a. Câu hỏi chưa rõ ràng
b. Vì số đo cung nhỏ AB bằng một nửa số đo cung lớn AB mà tổng số
đo 2 cung bằng $360^0$ nên số đo cung nhỏ $AB$ là $120^0$
Từ $O$ kẻ $OH\perp AB$ như hình. Tam giác $OAB$ cân tại $O$ nên đường cao $OH$ đồng thời là đường phân giác, trung tuyến.
Do đó: $\widehat{AOH}=\frac{1}{2}\widehat{AOB}=\frac{1}{2}.120^0=60^0$
$\frac{AH}{AO}=\sin \widehat{AOH}=\sin 60^0=\frac{\sqrt{3}}{2}$
$\Rightarrow AH=\frac{\sqrt{3}}{2}AO=\frac{\sqrt{3}}{2}R$
$\Rightarrow AB=2AH=\sqrt{3}R$
Tham khảo:
Kẻ OH⊥AB tại H
Xét ΔOAB có OA=OB(=R)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
Ta có: ΔOAB cân tại O(cmt)
mà OH là đường cao ứng với cạnh đáy AB(gt)
nên OH là đường trung tuyến và cũng là đường phân giác ứng với cạnh AB(Định lí tam giác cân)
hay H là trung điểm của AB
⇔AH=AB/2=R√3/2
Xét ΔOAH vuông tại H có
sinˆAOH=AH/AO=R⋅√3/2/R=√3/2
hay ˆAOH=60 độ
⇔ˆAOB=2⋅ˆAOH=120 độ (số đo cung nhỏ nhé)
Số đo cung lớn AB là: 360−120=240 độ
Chúc em học tốt
Hình bạn tự vẽ nhé
Ta có AB=OA=OB=R ⇒ \(\Delta\)OAB đều ⇒ góc AOB=60 độ Mà góc AOB = số đo cungAB ⇒ số đo cung AB =60 độ Lại có góc AMB là góc nội tiếp đường tròn chắn cung AB ⇒ góc AMB= \(\dfrac{1}{2}\) số đo cung AB =30 độ
Tính được sđ A B ⏜ nhỏ = A O B ^ = 90 0
Suy ra sđ A B ⏜ lớn = 270 0
Kẻ OH⊥AB tại H
Xét ΔOAB có OA=OB(=R)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
Ta có: ΔOAB cân tại O(cmt)
mà OH là đường cao ứng với cạnh đáy AB(gt)
nên OH là đường trung tuyến và cũng là đường phân giác ứng với cạnh AB(Định lí tam giác cân)
hay H là trung điểm của AB
\(\Leftrightarrow AH=\dfrac{AB}{2}=\dfrac{R\sqrt{3}}{2}\)
Xét ΔOAH vuông tại H có
\(\sin\widehat{AOH}=\dfrac{AH}{AO}=\dfrac{R\cdot\dfrac{\sqrt{3}}{2}}{R}=\dfrac{\sqrt{3}}{2}\)
hay \(\widehat{AOH}=60^0\)
\(\Leftrightarrow\widehat{AOB}=2\cdot\widehat{AOH}=120^0\)
Số đo cung lớn AB là: \(360^0-120^0=240^0\)