Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy 49 và 63 đều là các số chia hết cho 7 nên \(49a⋮7\) và \(63b⋮7\).
Do đó \(49a+63b⋮7\) với mọi số nguyên \(a,b\).
a: \(A=2019\cdot2021=2020^2-1\)
\(B=2020^2\)
Do đó: A<B
b.
72a+63b+21c
ta xét
72a = 3.24.a chia hết cho 3
63b=3.21.b chia hết cho 3
21c=3.7.c chia hết cho 3
=>72a+63b+21c chia hết cho 3 vì các số hạng đều chia hết cho 3
=>dpcm
1.
\(A=7+7^2+7^3+...+7^{78}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)
\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)
\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8
Vậy A chia hết cho 8 (đpcm)
\(A=3+3^2+3^3+...+3^{155}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)
\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)
\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121
Vậy A chia hết cho 121 (đpcm)
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Lời giải:
$49a+63b=7(7a+9b)\vdots 7$ (đpcm)