Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{2+a}{1+b}+\frac{1-2b}{1+2b}=\frac{1+a+1}{1+a}+\frac{2-\left(1+2b\right)}{1+2b}=\frac{1}{1+a}+\frac{2}{1+2b}\)
sử dụng bất đẳng thức Cauchy-Schwwarz ta có:
\(\frac{1}{1+a}+\frac{2}{1+2b}=\frac{1}{1+a}+\frac{1}{\frac{1}{2}+b}\ge\frac{4}{1+a+\frac{1}{2}+b}\ge\frac{4}{1+\frac{1}{2}+2}=\frac{8}{7}\)do a+b =<2
dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=2\\1+a=\frac{1}{2}+b\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{4}\\b=\frac{5}{4}\end{cases}}}\)
\(\frac{2+a}{1+a}+\frac{1-2b}{1+2b}=\frac{\left(2+a\right)\left(1+2b\right)+\left(1-2b\right)\left(1+a\right)}{\left(1+a\right)\left(1+2b\right)}=\frac{2a+2b+3}{\left(1+a\right)\left(1+2b\right)}.\)
Ta có: \(\left(2+2a\right)\left(1+2b\right)\le\frac{\left(2+2a+1+2b\right)^2}{4}=\frac{\left(2a+2b+3\right)^2}{4}\)
\(\Rightarrow\left(1+a\right)\left(1+2b\right)\le\frac{\left(2a+2b+3\right)^2}{8}.\)
\(\Rightarrow\frac{2+a}{1+a}+\frac{1-2b}{1+2b}=\frac{2a+2b+3}{\left(1+a\right) \left(1+2b\right)}\ge\frac{2a+2b+3}{\frac{\left(2a+2b+3\right)^2}{8}}=\frac{8}{2a+2b+3}\ge\frac{8}{2.2+3}=\frac{8}{7}.\)
\(A=\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\ge\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)}+\frac{4}{ab\left(a+b\right)}\)
\(\ge\left(\frac{1}{a^2-ab+b^2}+\frac{1}{ab}+\frac{1}{ab}+\frac{1}{ab}\right)+\frac{1}{ab}\)
\(\ge\frac{\left(1+1+1+1\right)^2}{\left(a+b\right)^2}+\frac{1}{ab}\ge\frac{16}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{4}}\ge16+4=20\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
Ta dễ có:
\(2+4ab=\left(a+b\right)^2+a+b\ge4ab+a+b\Rightarrow a+b\le2\)
\(P=\frac{a^2-2a+2}{b+1}+\frac{b^2-2b+2}{a+1}\)
\(=\frac{\left(a-1\right)^2}{b+1}+\frac{\left(b-1\right)^2}{a+1}+\frac{1}{a+1}+\frac{1}{b+1}\)
\(\ge\frac{\left(a+b-2\right)^2}{a+b+2}+\frac{4}{a+b+2}\ge\frac{\left(a+b-2\right)^2}{a+b+2}+1\ge1\)
Đẳng thức xảy ra tại \(a=b=1\)
hmm check hộ mình nhá
Đặt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\)
\(P=\frac{1}{\frac{2x}{y}+1}+\frac{1}{\frac{2y}{z}+1}+\frac{1}{\frac{2z}{x}+1}\)
\(=\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\)
\(=\frac{y^2}{2xy+y^2}+\frac{z^2}{2yz+z^2}+\frac{x^2}{2zx+x^2}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu "=" xảy ra <=> x = y = z<=> a = b = c = 1
Vậy min P = 1 tại a = b = c = 1
\(E=\frac{2+a}{1+a}+\frac{1-2b}{1+2b}\)
\(=\frac{1+a+1}{1+a}+\frac{-\left(1+2b\right)+1}{1+2b}\)
\(=1+\frac{1}{1+a}-1+\frac{1}{1+2b}\)
\(=\frac{1}{1+a}+\frac{1}{1+2b}\)
\(a+b\le2\Rightarrow a\le2-b\)
Đến đây đưa được về biến b rồi ó,giờ thì đạo hàm làm nốt nha !
bạn có thể làm nốt cho mk đc ko , mk ko biết đạo hàm là gì cả ?