Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}=\sqrt{d}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\Rightarrow ab+bc+ac\ge\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{d}}\) và \(\frac{1}{1+ab+bc+ac}\le\frac{\sqrt{d}}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)
Tương tự : \(\frac{1}{1+bc+cd+da}\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)
\(\frac{1}{1+cd+da+ac}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)
\(\frac{1}{1+da+ab+bd}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)
Cộng theo vế ta được đpcm.
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Đặt: \(M=\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}=\Sigma_{cyc}\frac{a}{a^2+ab+bc+ca}\)
\(\Rightarrow M.\left(a+b+c\right)=3-\Sigma_{cyc}\frac{bc}{a^2+ab+bc+ca}\)
Đến đây t cần chứng minh:
\(\frac{bc}{a^2+ab+bc+ca}+\frac{ca}{b^2+ab+bc+ca}+\frac{ab}{c^2+ab+bc+ca}\ge\frac{3}{4}\) (*)
Từ điều kiện ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\left(x,y,z>0\right)\)
\(\Rightarrow x+y+z=1\)
(*) \(\Leftrightarrow\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{y^2}{\left(x+y\right)\left(y+z\right)}+\frac{z^2}{\left(y+z\right)\left(z+x\right)}\ge\frac{3}{4}\)
Theo Cô-si: \(\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{9}{16}\left(x+y\right)\left(z+x\right)\ge\frac{3}{2}x\)
Nhứng phần kia tương tự
\(\Rightarrow\Sigma_{cyc}\frac{x^2}{\left(x+y\right)\left(z+x\right)}\ge\frac{3}{2}\left(x+y+z\right)-\frac{9}{16}\left[\left(x+y+z\right)^2+\left(xy+yz+zx\right)\right]\ge\frac{3}{4}\)
Lần trước làm không đúng hy vọng bây giờ gỡ lại được
Áp dụng BĐT cauchy-schwarz :
\(VT=\frac{a^4}{ab+ac+ad}+\frac{b^4}{ab+bc+bd}+\frac{c^4}{cd+ac+bc}+\frac{d^4}{ad+bd+cd}\)
\(\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\)
Mà \(3\left(a^2+b^2+c^2+d^2\right)\ge2\left(ab+ac+ad+bc+bd+cd\right)\)( dễ dàng chứng minh nó bằng AM-GM)
nên \(VT\ge\frac{a^2+b^2+c^2+d^2}{3}\)
Áp dụng BĐT AM-GM: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd;d^2+a^2\ge2ad\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge ab+bc+cd+da=1\)
do đó \(VT\ge\frac{1}{3}\)
Dấu''='' xảy ra khi \(a=b=c=d=\frac{1}{2}\)
Đặt \(\hept{\begin{cases}x=\frac{a+b}{2}\\y=\frac{c+d}{2}\end{cases}}\)
Ta có:
\(\left(1-a\right)\left(1-b\right)\ge0\)
\(\Leftrightarrow ab+1\ge a+b\)
\(\Rightarrow ab+bc+ca+1\ge bc+ca+a+b=\left(a+b\right)\left(c+1\right)\ge\left(a+b\right)\left(c+d\right)\left(1\right)\)
Tương tự ta có:
\(bc+cd+db+1\ge\left(a+b\right)\left(b+d\right)\left(2\right)\)
\(cd+da+ac+1\ge\left(a+b\right)\left(c+d\right)\left(3\right)\)
\(da+ab+bd+1\ge\left(a+b\right)\left(c+d\right)\left(4\right)\)
Từ (1), (2), (3), (4) ta có:
\(VT\le\frac{a+b+c+d}{\left(a+b\right)\left(c+d\right)}=\frac{x+y}{2xy}\le\frac{xy+1}{2xy}\left(@\right)\)
Ta lại có:
\(VP\ge\frac{3}{4}+\frac{1}{4x^2y^2}\left(@@\right)\)
Từ \(\left(@\right),\left(@@\right)\)cái cần chứng minh trở thành.
\(\frac{xy+1}{2xy}\le\frac{3}{4}+\frac{1}{4x^2y^2}\)
\(\Leftrightarrow\left(xy-1\right)^2\ge0\)(đúng)
Vậy ta có ĐPCM.