Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{3a}{3c}=\frac{5b}{5d}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a-5b}{3c-5d}=\frac{3a+5b}{3c+5d}\)
=> Đpcm
Chúc bạn làm bài tốt
vì a/b= c/d
⇒ a+b/c+d=3a+5b/3c+5d=3a-5b/3c-5d
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
3a+5b/3c+5d=3a-5b/3c-5d
⇒ 3a+5b/3a-5b=3c+5d/3c-5d (đpcm)
Ta có :
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{5b}{5d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a+5b}{3c+5d}=\frac{3a-5b}{3c-5d}\)
\(\Rightarrow\frac{3a+5b}{3a-5d}=\frac{3c+5d}{3c-5d}\)
Vậy \(\frac{3a+5b}{3a-5d}=\frac{3c+5d}{3c-5d}.\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Ta có:
a/b=c/d => a/c=b/d=2a/2c=3b/3d
= 2a+3b/2c+3d=2a-3b/2c-3d
=> 2a+3b/2a-3b=2c+3d/2c-3d (ĐPCM)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\frac{3a+5b}{3a-5b}=\frac{3bk+5b}{3bk-5b}=\frac{b\left(3k+5\right)}{b\left(3k-5\right)}=\frac{3k+5}{3k-5}\)
\(\frac{3c+5d}{3c-5d}=\frac{3dk+5d}{3dk-5d}=\frac{d\left(3k+5\right)}{d\left(3k-5\right)}=\frac{3k+5}{3k-5}\)
Vậy từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{d}{b}=\frac{c}{a}\Rightarrow\frac{c+d}{a+b}\Rightarrow\frac{3c+3d}{3a+3b}=\frac{3c-3d}{3a-3b}\)
\(\Rightarrow\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)\(\left(điềuphảichứngminh\right)\)